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Transformations

 Transformations are operations that create a new RDD from an existing 
one. They are lazily evaluated.

 Examples:

// Read data from a text file

val lines = spark.textFile("hdfs://path/to/data.txt")

// Filter lines containing the word 'Spark'

val filtered = lines.filter(_.contains("Spark"))

// Split lines into words

val words = filtered.flatMap(_.split(" "))

// Map words to (word, 1) pairs

val wordPairs = words.map(word => (word, 1))

Spark operations
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Actions

 Actions trigger the execution of transformations and return results to the 
driver or write them to storage.

 Examples:

// Count occurrences of each word

val wordCounts = wordPairs.reduceByKey(_ + _)

// Collect results to the driver

wordCounts.collect().foreach(println)

// Save results to HDFS

wordCounts.saveAsTextFile("hdfs://path/to/output")

Spark operations
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Job Execution Workflow

DAG (Directed Acyclic Graph):

 Transformations build a logical execution plan.

 Spark constructs a DAG for the workflow.

Stages and Tasks:

 A job is divided into stages, separated by shuffle boundaries.

 Each stage consists of multiple parallel tasks.

Lazy Evaluation:

 Transformations are evaluated only when an action is invoked.

 This allows Spark to optimize the execution plan.

Job execution 
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Example Workflow

// Read and process data

val data = spark.textFile("hdfs://path/to/data.txt")

val result = data.filter(_.contains("error"))

.map(line => (line.split(" ")(0), 1))

.reduceByKey(_ + _)

// Trigger execution and collect results

result.collect().foreach(println)

Job execution 
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Execution Flow

1. Transformations:

• textFile: Reads data.

• filter: Filters lines with "error".

• map: Maps lines to key-value pairs.

• reduceByKey: Aggregates values by key.

2. Actions:

collect: Triggers the execution and returns results.

Output:

• Example:

(error1, 42) 

(error2, 35)

Job execution 
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Spark: Cluster Computing with Working Sets 

• Leveraging Resilient Distributed Datasets (RDDs) for Iterative and 
Interactive Computing

Background:

 MapReduce limitations (acyclic data flow).

 Need for iterative machine learning algorithms and interactive 
analytics.

Purpose: Propose Spark for scalable, fault-tolerant cluster computing.

Spark Applications : Cluster computing with working sets
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Spark Overview

• Leveraging Resilient Distributed Datasets (RDDs) for Iterative and 
Interactive Computing

Key Features:

 Fault tolerance

 Scalability

 Interactive capabilities

Core Concept: Resilient Distributed Datasets (RDDs)
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Resilient Distributed Datasets (RDDs)

Definition:

 Read-only collections partitioned across machines.

Key Characteristics:

 Fault tolerance through lineage

 Lazy evaluation

 Memory caching for reuse
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Programming Model

Driver Program:

 High-level control flow.

RDD Operations:

 Transformations (e.g., map, filter)

 Actions (e.g., reduce, collect)

Shared Variables:

 Broadcast variables

 Accumulators
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Text Search Example

Objective:

 Count lines with "ERROR" in a log file.

Code Snippet:

val file = spark.textFile("hdfs://...")

val errs = file.filter(_.contains("ERROR"))

val ones = errs.map(_ => 1)

val count = ones.reduce(_+_)

Output:

 Total error lines: 1234 (Example result based on input data).
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Logistic Regression Example

Objective:

 Iterative classification using gradient descent.

Key Steps:

 Initialize random vector

 Update weights iteratively using cached data
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Logistic Regression Example cont’d.

Code Snippet:

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {  

val grad = spark.accumulator(new Vector(D))  

for (p <- points) {    

val s = (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

grad += s * p.x

}  

w -= grad.value

}

Output:

 Final weights vector: [1.23, -0.45, 0.67] (Example result).

 Number of iterations: 10
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Alternating Least Squares (ALS)

Objective: Collaborative filtering for recommendation systems.

Process:

• Optimize user and movie matrices iteratively.

• Use broadcast variables for efficiency.

Code Snippet:
val Rb = spark.broadcast(R)

for (i <- 1 to ITERATIONS) {  

U = spark.parallelize(0 until u).map(j => updateUser(j, Rb, M)).collect()  

M = spark.parallelize(0 until m).map(j => updateUser(j, Rb, U)).collect()

}

Output:

 Final user matrix: [[0.5, 0.3], [0.1, 0.7], ...]

 Final movie matrix: [[0.4, 0.2], [0.9, 0.6], ...]
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Implementation Insights

Architecture: 

• Built on Mesos.

• RDD lineage ensures fault tolerance.

Task Scheduling:

• Data locality using delay scheduling.

Shared Variables:

• Efficient serialization and caching.
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Experimental Results

Logistic Regression: 

• Spark vs. Hadoop performance comparison.

• Faster iterations due to caching.

• Example: 10x speedup after initial iteration.

Alternating Least Squares (ALS):

• Improved performance with broadcast variables.

• Example: 2.8x speedup for 30-node cluster.
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Discussion

Strengths: 

• Handles iterative and interactive workloads.

• Fault tolerance with minimal overhead.

Limitations:

• Prototype stage.

• Dependency on Scala.
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Conclusion

Summary: 

• Spark introduces RDDs for efficient data reuse.

• Outperforms traditional systems for iterative jobs.

Future Enhancements:

• Shuffle operations for group-by and joins.

• Higher-level interfaces (e.g., SQL, R).
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