
Prof R. Madana Mohana

BIG DATA ANALYTICS

Parallel Programming with Spark

Spark operations | Job execution |
Spark Applications

Prof R Madana Mohana || Big Data Analytics 1
Prof R Madana Mohana || Big Data Analytics

• Overview of Spark

• Fundamentals of Scala and Functional Programming

• Spark Concepts

 Resilient Distributed Datasets (RDD)

 Creating RDDs

 Basic Transformations

 Basic Actions

 Word Count Example

• Spark operations

• Job execution

• Spark Applications : Cluster computing with working sets

Parallel Programming with Spark: Outline

Prof R Madana Mohana || Big Data Analytics 2

Transformations

 Transformations are operations that create a new RDD from an existing
one. They are lazily evaluated.

 Examples:

// Read data from a text file

val lines = spark.textFile("hdfs://path/to/data.txt")

// Filter lines containing the word 'Spark'

val filtered = lines.filter(_.contains("Spark"))

// Split lines into words

val words = filtered.flatMap(_.split(" "))

// Map words to (word, 1) pairs

val wordPairs = words.map(word => (word, 1))

Spark operations

Prof R Madana Mohana || Big Data Analytics 3

Actions

 Actions trigger the execution of transformations and return results to the
driver or write them to storage.

 Examples:

// Count occurrences of each word

val wordCounts = wordPairs.reduceByKey(_ + _)

// Collect results to the driver

wordCounts.collect().foreach(println)

// Save results to HDFS

wordCounts.saveAsTextFile("hdfs://path/to/output")

Spark operations

Prof R Madana Mohana || Big Data Analytics 4

• Overview of Spark

• Fundamentals of Scala and Functional Programming

• Spark Concepts

 Resilient Distributed Datasets (RDD)

 Creating RDDs

 Basic Transformations

 Basic Actions

 Word Count Example

• Spark operations

• Job execution

• Spark Applications : Cluster computing with working sets

Parallel Programming with Spark: Outline

Prof R Madana Mohana || Big Data Analytics 5

Job Execution Workflow

DAG (Directed Acyclic Graph):

 Transformations build a logical execution plan.

 Spark constructs a DAG for the workflow.

Stages and Tasks:

 A job is divided into stages, separated by shuffle boundaries.

 Each stage consists of multiple parallel tasks.

Lazy Evaluation:

 Transformations are evaluated only when an action is invoked.

 This allows Spark to optimize the execution plan.

Job execution

Prof R Madana Mohana || Big Data Analytics 6

Example Workflow

// Read and process data

val data = spark.textFile("hdfs://path/to/data.txt")

val result = data.filter(_.contains("error"))

.map(line => (line.split(" ")(0), 1))

.reduceByKey(_ + _)

// Trigger execution and collect results

result.collect().foreach(println)

Job execution

Prof R Madana Mohana || Big Data Analytics 7

Execution Flow

1. Transformations:

• textFile: Reads data.

• filter: Filters lines with "error".

• map: Maps lines to key-value pairs.

• reduceByKey: Aggregates values by key.

2. Actions:

collect: Triggers the execution and returns results.

Output:

• Example:

(error1, 42)

(error2, 35)

Job execution

Prof R Madana Mohana || Big Data Analytics 8

• Overview of Spark

• Fundamentals of Scala and Functional Programming

• Spark Concepts

 Resilient Distributed Datasets (RDD)

 Creating RDDs

 Basic Transformations

 Basic Actions

 Word Count Example

• Spark operations

• Job execution

• Spark Applications : Cluster computing with working sets

Parallel Programming with Spark: Outline

Prof R Madana Mohana || Big Data Analytics 9

Spark: Cluster Computing with Working Sets

• Leveraging Resilient Distributed Datasets (RDDs) for Iterative and
Interactive Computing

Background:

 MapReduce limitations (acyclic data flow).

 Need for iterative machine learning algorithms and interactive
analytics.

Purpose: Propose Spark for scalable, fault-tolerant cluster computing.

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 10

Spark Overview

• Leveraging Resilient Distributed Datasets (RDDs) for Iterative and
Interactive Computing

Key Features:

 Fault tolerance

 Scalability

 Interactive capabilities

Core Concept: Resilient Distributed Datasets (RDDs)

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 11

Resilient Distributed Datasets (RDDs)

Definition:

 Read-only collections partitioned across machines.

Key Characteristics:

 Fault tolerance through lineage

 Lazy evaluation

 Memory caching for reuse

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 12

Programming Model

Driver Program:

 High-level control flow.

RDD Operations:

 Transformations (e.g., map, filter)

 Actions (e.g., reduce, collect)

Shared Variables:

 Broadcast variables

 Accumulators

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 13

Text Search Example

Objective:

 Count lines with "ERROR" in a log file.

Code Snippet:

val file = spark.textFile("hdfs://...")

val errs = file.filter(_.contains("ERROR"))

val ones = errs.map(_ => 1)

val count = ones.reduce(_+_)

Output:

 Total error lines: 1234 (Example result based on input data).

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 14

Logistic Regression Example

Objective:

 Iterative classification using gradient descent.

Key Steps:

 Initialize random vector

 Update weights iteratively using cached data

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 15

Logistic Regression Example cont’d.

Code Snippet:

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {

val grad = spark.accumulator(new Vector(D))

for (p <- points) {

val s = (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

grad += s * p.x

}

w -= grad.value

}

Output:

 Final weights vector: [1.23, -0.45, 0.67] (Example result).

 Number of iterations: 10

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 16

Alternating Least Squares (ALS)

Objective: Collaborative filtering for recommendation systems.

Process:

• Optimize user and movie matrices iteratively.

• Use broadcast variables for efficiency.

Code Snippet:
val Rb = spark.broadcast(R)

for (i <- 1 to ITERATIONS) {

U = spark.parallelize(0 until u).map(j => updateUser(j, Rb, M)).collect()

M = spark.parallelize(0 until m).map(j => updateUser(j, Rb, U)).collect()

}

Output:

 Final user matrix: [[0.5, 0.3], [0.1, 0.7], ...]

 Final movie matrix: [[0.4, 0.2], [0.9, 0.6], ...]

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 17

Implementation Insights

Architecture:

• Built on Mesos.

• RDD lineage ensures fault tolerance.

Task Scheduling:

• Data locality using delay scheduling.

Shared Variables:

• Efficient serialization and caching.

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 18

Experimental Results

Logistic Regression:

• Spark vs. Hadoop performance comparison.

• Faster iterations due to caching.

• Example: 10x speedup after initial iteration.

Alternating Least Squares (ALS):

• Improved performance with broadcast variables.

• Example: 2.8x speedup for 30-node cluster.

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 19

Discussion

Strengths:

• Handles iterative and interactive workloads.

• Fault tolerance with minimal overhead.

Limitations:

• Prototype stage.

• Dependency on Scala.

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 20

Conclusion

Summary:

• Spark introduces RDDs for efficient data reuse.

• Outperforms traditional systems for iterative jobs.

Future Enhancements:

• Shuffle operations for group-by and joins.

• Higher-level interfaces (e.g., SQL, R).

Spark Applications : Cluster computing with working sets

Prof R Madana Mohana || Big Data Analytics 21

