
DATABASE MANAGEMENT SYSTEMS

Prof R MADANA MOHANA

Module - II

SQL - Structured Query Language

Lecture - 2

Data Definition Language (DDL)

DATABASE MANAGEMENT SYSTEMS

Module - II SQL

SQL - DDL

 Introduction

 SQL Data Types

 Create Table Construct

 Integrity Constraints in Create Table

Data Definition Language (DDL)

The SQL Data-Definition Language (DDL) allows the specification of
information about relations, including:

• The schema for each relation.

• The type of values associated with each attribute.

• The Integrity constraints

• The set of indices to be maintained for each relation.

• Security and authorization information for each relation.

• The physical storage structure of each relation on disk.

3

Data Definition Language (DDL)

Data Definition Language (DDL) commands:

1. CREATE: This command is used to create the database or its
objects (like table, index, function, views, store procedure, and
triggers).

2. DROP: This command is used to delete objects from the database.

3. ALTER: This is used to alter the structure of the database.

4. TRUNCATE: This is used to remove all records from a table,
including all spaces allocated for the records are removed.

5. COMMENT: This is used to add comments to the data dictionary.

6. RENAME: This is used to rename an object existing in the
database.

4

Domain Types / Data Types in SQL

1. char(n). Fixed length character string, with user-specified
length n.

2. varchar(n). Variable length character strings, with user-
specified maximum length n.

3. int. Integer (a finite subset of the integers that is machine-
dependent).

4. smallint. Small integer (a machine-dependent subset of the
integer domain type).

5

Domain Types / Data Types in SQL

5. numeric(p,d). Fixed point number, with user-specified
precision of p digits, with d digits to the right of decimal point.
(ex., numeric(3,1), allows 44.5 to be stores exactly, but not
444.5 or 0.32)

6. real, double precision. Floating point and double-
precision floating point numbers, with machine-dependent
precision.

7. float(n). Floating point number, with user-specified precision
of at least n digits.

6

Create Table Construct

An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),

...,

(integrity-constraintk))

• r is the name of the relation

• each Ai is an attribute name in the schema of relation r

• Di is the data type of values in the domain of attribute Ai

7

Create Table Construct

Example:

create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

8

Integrity Constraints in Create Table

• Types of integrity constraints:

 primary key (A1, ..., An)

 foreign key (Am, ..., An) references r

 not null

• SQL prevents any update to the database that violates an integrity
constraint.

9

Integrity Constraints in Create Table

Example-1:

create table instructor (

ID char(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department);

10

Integrity Constraints in Create Table

Example-2:
create table student (

ID varchar(5),

name varchar(20) not null,

dept_name varchar(20),

tot_cred numeric(3,0),

primary key (ID),

foreign key (dept_name) references department);

11

Integrity Constraints in Create Table

Example-3:
create table takes (

ID varchar(5),

course_id varchar(8),

sec_id varchar(8),

semester varchar(6),

year numeric(4,0),

grade varchar(2),

primary key (ID, course_id, sec_id, semester, year),

foreign key (ID) references student,

foreign key (course_id, sec_id, semester, year) references

section);

12

Integrity Constraints in Create Table

Example-4:

create table course (

course_id varchar(8),

title varchar(50),

dept_name varchar(20),

credits numeric(2,0),

primary key (course_id),

foreign key (dept_name) references department);

13

Modifying the Structure of Tables

• Alter
Adding New Columns

• alter table r add A D

• where A is the name of the attribute to be added to
relation r and D is the domain of A.

• All exiting tuples in the relation are assigned null as the
value for the new attribute.

• alter table r drop A

• where A is the name of an attribute of relation r
• Dropping of attributes not supported by many databases.

14

Modifying the Structure of Tables

• Alter - Adding New Columns

Example: Enter a new filed city in the table BRANCH_MSTR

ALTER TABLE BRANCH_MSTR ADD(

city varchar(8));

15

Modifying the Structure of Tables

• Alter
Dropping a Column from a Table

• alter table r drop column A

• where A is the name of an attribute of relation r
• Dropping of attributes not supported by many databases.

16

Modifying the Structure of Tables

• Alter

Dropping a Column from a Table

Example: Drop the column city from the table BRANCH_MSTR

ALTER TABLE BRANCH_MSTR DROP COLUMN city;

17

Modifying the Structure of Tables

• Alter

Modifying Existing Columns

Syntax:

ALTER TABLE <Table_Name> MODIFY (<Column_Name>

<New_datatype>(<New_size>));

18

Modifying the Structure of Tables

• Alter

Modifying Existing Columns

Example: Alter the BRANCH_MSTR table to allow the NAME filed to

hold maximum of 50 characters

ALTER TABLE BRANCH_MSTR MODIFY (NAME varchar(50));

19

Modifying the Structure of Tables

• Renaming Tables

Syntax:

RENAME <Table_Nmae> TO <New_Tablename>;

20

Modifying the Structure of Tables

• Renaming Tables

Example: Change the name of BRANCH_MASTER table to BRANCHES table

RENAME BRANCH_MASTER TO BRANCHES;

21

Modifying the Structure of Tables

• Truncating Tables

• Truncate table empties a table completely, this is equivalent to a

DELETE statement that deletes all rows, but there are practical

differences under some circumstances.

22

Modifying the Structure of Tables

• Truncating Tables

Truncate table differs from DELETE in the following ways:

 Truncate operations drop and re-create the table, which is must
faster than deleting rows one bye one.

 Truncate operations are not transaction-safe (i.e.. An error will
occur if an active transaction or an active table lock exists)

 The number of deleted rows are not returned.

23

Modifying the Structure of Tables

• Truncating Tables

Syntax:

TRUNCATE TABLE <Table_Name>;

24

Modifying the Structure of Tables

• Truncating Tables

Example: Truncate the table BRANCH_MASTER

TRUNCATE TABLE BRANCH_MASTER;

25

Modifying the Structure of Tables

• Destroying Tables

 Sometimes tables within a particular database become
obsolete and need to be discarded. In such situation using
DROP TABLE statement with the table name can destroy a
specific table.

26

Modifying the Structure of Tables

• Destroying Tables

Syntax:

DROP TABLE <Table_Name>;

Note:

If a table is dropped all records held within it are lost and cannot be
recovered.

27

Modifying the Structure of Tables

• Destroying Tables

Example: Remove table BRANCH_MASTER along with the data held

DROP TABLE BRANCH_MASTER;

28

Modifying the Structure of Tables

• Comment

 Comments in SQL are similar to comments in other
programming languages such as Java, C++, Python, etc.

 They are primarily used to define a code section for easier
understanding.

 Comments can be a single line, multi-line, or even inline
types.

29

Modifying the Structure of Tables

• Comment

 Single line comment

-- this is a single line comment

SELECT * FROM instructor;

30

Modifying the Structure of Tables

• Comment

 Multi-line comment

/* this is a multi line comment

SELECT * FROM instructor;*/

SELECT * FROM BRANCH_MASTER;

31

Modifying the Structure of Tables

• Comment

 Inline comment

SELECT CID FROM instructor /*WHERE

CID=101*/;

32

