
DATABASE MANAGEMENT SYSTEMS

Prof R MADANA MOHANA

Module - I

Relational Databases

Lecture-10

RELATIONAL CALCULUS

DATABASE MANAGEMENT SYSTEMS

Module - I Relational Databases

RELATIONAL CALCULUS

 Tuple Relational Calculus

 Domain Relational Calculus

Relational Calculus

• Relational Calculus is non procedural or declarative relational query
language.

• It has a big influence on the design of commercial query languages
such as SQL and especially Query-by-Example (QBE).

• It has two variants:

1. Tuple Relational Calculus (TRC)

• Tuples as values. Strong influence on SQL

2. Domain Relational Calculus (DRC)

• Variables range over field value. Strong influence on QBE

3

Tuple Relational Calculus (TRC)

• A tuple variable is a variable that takes on tuples of a particular
relation schema as values.

• That is, every value assigned to a given tuple variable has the same
number and type of fields.

4

Tuple Relational Calculus (TRC)

• TRC is a nonprocedural query language, where each query is of the
form:

{t | P(t)}

It is the set of all tuples t such that predicate P is true for t

Where t is a tuple variable and P(t) denotes a formula that
describes t.

 t[A] denotes the value of tuple t on attribute A

 tr denotes that tuple t is in relation r

 P is a formula similar to that of the predicate calculus

5

Predicate Calculus Formulas

• Set of attributes and constants

• Set of comparison operators: (e.g., , , , , , )

• Set of connectives: and (), or (v)‚ not ()

• Implication (): x  y, if x if true, then y is true

x  y  x v y

• Set of quantifiers:

• t r(Q(t))  ”there exists” a tuple in t in relation r

such that predicate Q(t) is true

• tr(Q(t))Q is true “for all” tuples t in relation r

6

Syntax of Tuple Relational Calculus (TRC) Queries

• Let Rel be a relation name, R and S be tuple variables, a an
attribute of R and b an attribute of S.

• Let op denote an operator in the set {, , , , , }.

• An atomic formula is one of the following:

1. R  Rel

2. R.a op S.b

3. R.a op constant or

4. Constant op R.a

7

Semantics of Tuple Relational Calculus (TRC) Queries

• A formula is recursively defined to be one of the following, where p
and q are themselves formulas, and p(R) denotes a formula on
which the variable R appears:

1. Any atomic formula

2.  p, p  q, p v q or p  q

3. R(p(R)), where R is a tuple variable

4. R(p(R)), where R is a tuple variable

8

Examples of Tuple Relational Calculus (TRC) Queries

1. Find the ID, name, dept_name, salary for instructors whose salary
is greater than $80,000

• Query:

{t | t  instructor  t[salary]  80000}

Notice that a relation on schema (ID, name, dept_name, salary) is
implicitly defined by the query

2. As in the previous query, but output only the ID attribute value

{t | sinstructor(t[ID] = s[ID]  s[salary]

 80000)}

Notice that a relation on schema (ID) is implicitly defined by the query
9

Examples of Tuple Relational Calculus (TRC) Queries

3. Find the names of all instructors whose department is in the
Watson building

• Query:

{t|sinstructor (t[name] = s[name]

 udepartment(u[dept_name] =

s[dept_name]  u[building] = “Watson”))}

10

Examples of Tuple Relational Calculus (TRC) Queries

4. Find the set of all courses taught in the Fall 2009 semester, or in
the Spring 2010 semester, or both

• Query:

{t|ssection(t[course_id] = s[course_id] 

s[semester] = “Fall”  s[year] = 2009 V

usection(t[course_id = u[course_id] 

u[semester] = “Spring”  u[year] = 2010)}

11

Examples of Tuple Relational Calculus (TRC) Queries

5. Find the set of all courses taught in the Fall 2009 semester, and in
the Spring 2010 semester

• Query:

{t|ssection (t[course_id] = s[course_id] 

s [semester] = “Fall”  s[year] = 2009

 usection (t[course_id] = u[course_id] 

u [semester] = “Spring”  u[year] = 2010)}

12

Examples of Tuple Relational Calculus (TRC) Queries

6. Find the set of all courses taught in the Fall 2009 semester, but not
in the Spring 2010 semester

• Query:

{t|ssection (t[course_id] = s[course_id] 

s[semester] = “Fall”  s[year] = 2009

 u section (t[course_id] = u[course_id] 

u[semester] = “Spring”  u[year] = 2010)}

13

Universal Quantification

7. Find all students who have taken all courses offered in the Biology
department

• Query:

{t|rstudent(t[ID] = r[ID])

(ucourse(u[dept_name]=“Biology” 

stakes(t[ID]= s[ID]  s[course_id]=

u[course_id]))}

14

Safety of Expressions

• It is possible to write tuple calculus expressions that generate
infinite relations.

• For example, {t|tr} results in an infinite relation if the
domain of any attribute of relation r is infinite.

• To guard against the problem, we restrict the set of allowable
expressions to safe expressions.

15

Safety of Expressions

• An expression {t|P(t)} in the tuple relational calculus is safe if
every component of t appears in one of the relations, tuples, or
constants that appear in P.

 NOTE: this is more than just a syntax condition.

 E.g., {t|t[A] = 5  true } is not safe - it defines an

infinite set with attribute values that do not appear in any
relation or tuples or constants in P.

16

Safety of Expressions

• Consider that query to find all students who have taken all courses
offered in the Biology department.

{t|rstudent(t[ID] = r[ID])

(ucourse(u[dept_name]=“Biology” 

stakes(t[ID]= s[ID]  s[course_id]=

u[course_id]))}

Without the existential quantification on student, the above query
would be unsafe if the Biology department has not offered any
courses.

17

