
CHAPTER 16

Pig

Apache Pig raises the level of abstraction for processing large datasets. MapReduce
allows you, as the programmer, to specify a map function followed by a reduce function,
but working out how to fit your data processing into this pattern, which often requires
multiple MapReduce stages, can be a challenge. With Pig, the data structures are much
richer, typically being multivalued and nested, and the transformations you can apply
to the data are much more powerful. They include joins, for example, which are not for
the faint of heart in MapReduce.

Pig is made up of two pieces:

• The language used to express data flows, called Pig Latin.
• The execution environment to run Pig Latin programs. There are currently two

environments: local execution in a single JVM and distributed execution on a Ha‐
doop cluster.

A Pig Latin program is made up of a series of operations, or transformations, that are
applied to the input data to produce output. Taken as a whole, the operations describe
a data flow, which the Pig execution environment translates into an executable repre‐
sentation and then runs. Under the covers, Pig turns the transformations into a series
of MapReduce jobs, but as a programmer you are mostly unaware of this, which allows
you to focus on the data rather than the nature of the execution.

Pig is a scripting language for exploring large datasets. One criticism of MapReduce is
that the development cycle is very long. Writing the mappers and reducers, compiling
and packaging the code, submitting the job(s), and retrieving the results is a time-
consuming business, and even with Streaming, which removes the compile and package
step, the experience is still involved. Pig’s sweet spot is its ability to process terabytes of
data in response to a half-dozen lines of Pig Latin issued from the console. Indeed, it
was created at Yahoo! to make it easier for researchers and engineers to mine the huge
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datasets there. Pig is very supportive of a programmer writing a query, since it provides
several commands for introspecting the data structures in your program as it is written.
Even more useful, it can perform a sample run on a representative subset of your input
data, so you can see whether there are errors in the processing before unleashing it on
the full dataset.

Pig was designed to be extensible. Virtually all parts of the processing path are custom‐
izable: loading, storing, filtering, grouping, and joining can all be altered by user-defined
functions (UDFs). These functions operate on Pig’s nested data model, so they can
integrate very deeply with Pig’s operators. As another benefit, UDFs tend to be more
reusable than the libraries developed for writing MapReduce programs.

In some cases, Pig doesn’t perform as well as programs written in MapReduce. However,
the gap is narrowing with each release, as the Pig team implements sophisticated algo‐
rithms for applying Pig’s relational operators. It’s fair to say that unless you are willing
to invest a lot of effort optimizing Java MapReduce code, writing queries in Pig Latin
will save you time.

Installing and Running Pig
Pig runs as a client-side application. Even if you want to run Pig on a Hadoop cluster,
there is nothing extra to install on the cluster: Pig launches jobs and interacts with HDFS
(or other Hadoop filesystems) from your workstation.

Installation is straightforward. Download a stable release from http://pig.apache.org/
releases.html, and unpack the tarball in a suitable place on your workstation:

% tar xzf pig-x.y.z.tar.gz

It’s convenient to add Pig’s binary directory to your command-line path. For example:
% export PIG_HOME=~/sw/pig-x.y.z
% export PATH=$PATH:$PIG_HOME/bin

You also need to set the JAVA_HOME environment variable to point to a suitable Java
installation.

Try typing pig -help to get usage instructions.

Execution Types
Pig has two execution types or modes: local mode and MapReduce mode. Execution
modes for Apache Tez and Spark (see Chapter 19) were both under development at the
time of writing. Both promise significant performance gains over MapReduce mode,
so try them if they are available in the version of Pig you are using.
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Local mode

In local mode, Pig runs in a single JVM and accesses the local filesystem. This mode is
suitable only for small datasets and when trying out Pig.

The execution type is set using the -x or -exectype option. To run in local mode, set
the option to local:

% pig -x local
grunt> 

This starts Grunt, the Pig interactive shell, which is discussed in more detail shortly.

MapReduce mode

In MapReduce mode, Pig translates queries into MapReduce jobs and runs them on a
Hadoop cluster. The cluster may be a pseudo- or fully distributed cluster. MapReduce
mode (with a fully distributed cluster) is what you use when you want to run Pig on
large datasets.

To use MapReduce mode, you first need to check that the version of Pig you downloaded
is compatible with the version of Hadoop you are using. Pig releases will only work
against particular versions of Hadoop; this is documented in the release notes.

Pig honors the HADOOP_HOME environment variable for finding which Hadoop client to
run. However, if it is not set, Pig will use a bundled copy of the Hadoop libraries. Note
that these may not match the version of Hadoop running on your cluster, so it is best
to explicitly set HADOOP_HOME.

Next, you need to point Pig at the cluster’s namenode and resource manager. If the
installation of Hadoop at HADOOP_HOME is already configured for this, then there is noth‐
ing more to do. Otherwise, you can set HADOOP_CONF_DIR to a directory containing the
Hadoop site file (or files) that define fs.defaultFS, yarn.resourcemanager.address,
and mapreduce.framework.name (the latter should be set to yarn).

Alternatively, you can set these properties in the pig.properties file in Pig’s conf directory
(or the directory specified by PIG_CONF_DIR). Here’s an example for a pseudo-
distributed setup:

fs.defaultFS=hdfs://localhost/
mapreduce.framework.name=yarn
yarn.resourcemanager.address=localhost:8032

Once you have configured Pig to connect to a Hadoop cluster, you can launch Pig, setting
the -x option to mapreduce or omitting it entirely, as MapReduce mode is the default.
We’ve used the -brief option to stop timestamps from being logged:

% pig -brief
Logging error messages to: /Users/tom/pig_1414246949680.log
Default bootup file /Users/tom/.pigbootup not found
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1. History is stored in a file called .pig_history in your home directory.

Connecting to hadoop file system at: hdfs://localhost/
grunt> 

As you can see from the output, Pig reports the filesystem (but not the YARN resource
manager) that it has connected to.

In MapReduce mode, you can optionally enable auto-local mode (by setting
pig.auto.local.enabled to true), which is an optimization that runs small jobs locally
if the input is less than 100 MB (set by pig.auto.local.input.maxbytes, default
100,000,000) and no more than one reducer is being used.

Running Pig Programs
There are three ways of executing Pig programs, all of which work in both local and
MapReduce mode:
Script

Pig can run a script file that contains Pig commands. For example, pig script.pig
runs the commands in the local file script.pig. Alternatively, for very short scripts,
you can use the -e option to run a script specified as a string on the command line.

Grunt
Grunt is an interactive shell for running Pig commands. Grunt is started when no
file is specified for Pig to run and the -e option is not used. It is also possible to run
Pig scripts from within Grunt using run and exec.

Embedded
You can run Pig programs from Java using the PigServer class, much like you can
use JDBC to run SQL programs from Java. For programmatic access to Grunt, use
PigRunner.

Grunt
Grunt has line-editing facilities like those found in GNU Readline (used in the bash
shell and many other command-line applications). For instance, the Ctrl-E key com‐
bination will move the cursor to the end of the line. Grunt remembers command history,
too,1 and you can recall lines in the history buffer using Ctrl-P or Ctrl-N (for previous
and next), or equivalently, the up or down cursor keys.

Another handy feature is Grunt’s completion mechanism, which will try to complete
Pig Latin keywords and functions when you press the Tab key. For example, consider
the following incomplete line:

grunt> a = foreach b ge
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If you press the Tab key at this point, ge will expand to generate, a Pig Latin keyword:
grunt> a = foreach b generate

You can customize the completion tokens by creating a file named autocomplete and
placing it on Pig’s classpath (such as in the conf directory in Pig’s install directory) or in
the directory you invoked Grunt from. The file should have one token per line, and
tokens must not contain any whitespace. Matching is case sensitive. It can be very handy
to add commonly used file paths (especially because Pig does not perform filename
completion) or the names of any user-defined functions you have created.

You can get a list of commands using the help command. When you’ve finished your
Grunt session, you can exit with the quit command, or the equivalent shortcut \q.

Pig Latin Editors
There are Pig Latin syntax highlighters available for a variety of editors, including
Eclipse, IntelliJ IDEA, Vim, Emacs, and TextMate. Details are available on the Pig wiki.

Many Hadoop distributions come with the Hue web interface, which has a Pig script
editor and launcher.

An Example
Let’s look at a simple example by writing the program to calculate the maximum
recorded temperature by year for the weather dataset in Pig Latin (just like we did using
MapReduce in Chapter 2). The complete program is only a few lines long:

-- max_temp.pig: Finds the maximum temperature by year
records = LOAD 'input/ncdc/micro-tab/sample.txt'
  AS (year:chararray, temperature:int, quality:int);
filtered_records = FILTER records BY temperature != 9999 AND
  quality IN (0, 1, 4, 5, 9);
grouped_records = GROUP filtered_records BY year;
max_temp = FOREACH grouped_records GENERATE group,
  MAX(filtered_records.temperature);
DUMP max_temp;

To explore what’s going on, we’ll use Pig’s Grunt interpreter, which allows us to enter
lines and interact with the program to understand what it’s doing. Start up Grunt in
local mode, and then enter the first line of the Pig script:

grunt> records = LOAD 'input/ncdc/micro-tab/sample.txt'
>>   AS (year:chararray, temperature:int, quality:int);

For simplicity, the program assumes that the input is tab-delimited text, with each line
having just year, temperature, and quality fields. (Pig actually has more flexibility than
this with regard to the input formats it accepts, as we’ll see later.) This line describes the
input data we want to process. The year:chararray notation describes the field’s name
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and type; chararray is like a Java String, and an int is like a Java int. The LOAD operator
takes a URI argument; here we are just using a local file, but we could refer to an HDFS
URI. The AS clause (which is optional) gives the fields names to make it convenient to
refer to them in subsequent statements.

The result of the LOAD operator, and indeed any operator in Pig Latin, is a relation, which
is just a set of tuples. A tuple is just like a row of data in a database table, with multiple
fields in a particular order. In this example, the LOAD function produces a set of (year,
temperature, quality) tuples that are present in the input file. We write a relation with
one tuple per line, where tuples are represented as comma-separated items in
parentheses:

(1950,0,1)
(1950,22,1)
(1950,-11,1)
(1949,111,1)

Relations are given names, or aliases, so they can be referred to. This relation is given
the records alias. We can examine the contents of an alias using the DUMP operator:

grunt> DUMP records;
(1950,0,1)
(1950,22,1)
(1950,-11,1)
(1949,111,1)
(1949,78,1)

We can also see the structure of a relation—the relation’s schema—using the DESCRIBE
operator on the relation’s alias:

grunt> DESCRIBE records;
records: {year: chararray,temperature: int,quality: int}

This tells us that records has three fields, with aliases year, temperature, and quality,
which are the names we gave them in the AS clause. The fields have the types given to
them in the AS clause, too. We examine types in Pig in more detail later.

The second statement removes records that have a missing temperature (indicated by
a value of 9999) or an unsatisfactory quality reading. For this small dataset, no records
are filtered out:

grunt> filtered_records = FILTER records BY temperature != 9999 AND
>>   quality IN (0, 1, 4, 5, 9);
grunt> DUMP filtered_records;
(1950,0,1)
(1950,22,1)
(1950,-11,1)
(1949,111,1)
(1949,78,1)
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The third statement uses the GROUP function to group the records relation by the year
field. Let’s use DUMP to see what it produces:

grunt> grouped_records = GROUP filtered_records BY year;
grunt> DUMP grouped_records;
(1949,{(1949,78,1),(1949,111,1)})
(1950,{(1950,-11,1),(1950,22,1),(1950,0,1)})

We now have two rows, or tuples: one for each year in the input data. The first field in
each tuple is the field being grouped by (the year), and the second field has a bag of
tuples for that year. A bag is just an unordered collection of tuples, which in Pig Latin
is represented using curly braces.

By grouping the data in this way, we have created a row per year, so now all that remains
is to find the maximum temperature for the tuples in each bag. Before we do this, let’s
understand the structure of the grouped_records relation:

grunt> DESCRIBE grouped_records;
grouped_records: {group: chararray,filtered_records: {year: chararray,
temperature: int,quality: int}}

This tells us that the grouping field is given the alias group by Pig, and the second field
is the same structure as the filtered_records relation that was being grouped. With
this information, we can try the fourth transformation:

grunt> max_temp = FOREACH grouped_records GENERATE group,
>>   MAX(filtered_records.temperature);

FOREACH processes every row to generate a derived set of rows, using a GENERATE
clause to define the fields in each derived row. In this example, the first field is
group, which is just the year. The second field is a little more complex.
The filtered_records.temperature reference is to the temperature field of the
filtered_records bag in the grouped_records relation. MAX is a built-in function for
calculating the maximum value of fields in a bag. In this case, it calculates the maximum
temperature for the fields in each filtered_records bag. Let’s check the result:

grunt> DUMP max_temp;
(1949,111)
(1950,22)

We’ve successfully calculated the maximum temperature for each year.

Generating Examples
In this example, we’ve used a small sample dataset with just a handful of rows to make
it easier to follow the data flow and aid debugging. Creating a cut-down dataset is an
art, as ideally it should be rich enough to cover all the cases to exercise your queries (the
completeness property), yet small enough to make sense to the programmer (the con‐
ciseness property). Using a random sample doesn’t work well in general because join
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and filter operations tend to remove all random data, leaving an empty result, which is
not illustrative of the general data flow.

With the ILLUSTRATE operator, Pig provides a tool for generating a reasonably complete
and concise sample dataset. Here is the output from running ILLUSTRATE on our dataset
(slightly reformatted to fit the page):

grunt> ILLUSTRATE max_temp;
-------------------------------------------------------------------------------
| records     | year:chararray      | temperature:int      | quality:int      | 
-------------------------------------------------------------------------------
|             | 1949                | 78                   | 1                | 
|             | 1949                | 111                  | 1                | 
|             | 1949                | 9999                 | 1                | 
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
| filtered_records   | year:chararray    | temperature:int    | quality:int   | 
-------------------------------------------------------------------------------
|                    | 1949              | 78                 | 1             | 
|                    | 1949              | 111                | 1             | 
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
| grouped_records  | group:chararray   | filtered_records:bag{:tuple(         |
                                           year:chararray,temperature:int,    |
                                           quality:int)}                      |
-------------------------------------------------------------------------------
|                  | 1949              | {(1949, 78, 1), (1949, 111, 1)}      |
-------------------------------------------------------------------------------
---------------------------------------------------
| max_temp     | group:chararray      | :int      | 
---------------------------------------------------
|              | 1949                 | 111       | 
---------------------------------------------------

Notice that Pig used some of the original data (this is important to keep the generated
dataset realistic), as well as creating some new data. It noticed the special value 9999 in
the query and created a tuple containing this value to exercise the FILTER statement.

In summary, the output of ILLUSTRATE is easy to follow and can help you understand
what your query is doing.

Comparison with Databases
Having seen Pig in action, it might seem that Pig Latin is similar to SQL. The presence
of such operators as GROUP BY and DESCRIBE reinforces this impression. However, there
are several differences between the two languages, and between Pig and relational da‐
tabase management systems (RDBMSs) in general.

The most significant difference is that Pig Latin is a data flow programming language,
whereas SQL is a declarative programming language. In other words, a Pig Latin pro‐
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2. Or as the Pig Philosophy has it, “Pigs eat anything.”

gram is a step-by-step set of operations on an input relation, in which each step is a
single transformation. By contrast, SQL statements are a set of constraints that, taken
together, define the output. In many ways, programming in Pig Latin is like working at
the level of an RDBMS query planner, which figures out how to turn a declarative state‐
ment into a system of steps.

RDBMSs store data in tables, with tightly predefined schemas. Pig is more relaxed about
the data that it processes: you can define a schema at runtime, but it’s optional. Essen‐
tially, it will operate on any source of tuples (although the source should support being
read in parallel, by being in multiple files, for example), where a UDF is used to read
the tuples from their raw representation.2 The most common representation is a text
file with tab-separated fields, and Pig provides a built-in load function for this format.
Unlike with a traditional database, there is no data import process to load the data into
the RDBMS. The data is loaded from the filesystem (usually HDFS) as the first step in
the processing.

Pig’s support for complex, nested data structures further differentiates it from SQL,
which operates on flatter data structures. Also, Pig’s ability to use UDFs and streaming
operators that are tightly integrated with the language and Pig’s nested data structures
makes Pig Latin more customizable than most SQL dialects.

RDBMSs have several features to support online, low-latency queries, such as transac‐
tions and indexes, that are absent in Pig. Pig does not support random reads or queries
on the order of tens of milliseconds. Nor does it support random writes to update small
portions of data; all writes are bulk streaming writes, just like with MapReduce.

Hive (covered in Chapter 17) sits between Pig and conventional RDBMSs. Like Pig,
Hive is designed to use HDFS for storage, but otherwise there are some significant
differences. Its query language, HiveQL, is based on SQL, and anyone who is familiar
with SQL will have little trouble writing queries in HiveQL. Like RDBMSs, Hive man‐
dates that all data be stored in tables, with a schema under its management; however, it
can associate a schema with preexisting data in HDFS, so the load step is optional. Pig
is able to work with Hive tables using HCatalog; this is discussed further in “Using Hive
tables with HCatalog” on page 442.
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3. Not to be confused with Pig Latin, the language game. English words are translated into Pig Latin by moving
the initial consonant sound to the end of the word and adding an “ay” sound. For example, “pig” becomes
“ig-pay,” and “Hadoop” becomes “Adoop-hay.”

4. Pig Latin does not have a formal language definition as such, but there is a comprehensive guide to the
language that you can find through a link on the Pig website.

5. You sometimes see these terms being used interchangeably in documentation on Pig Latin: for example,
“GROUP command,” “GROUP operation,” “GROUP statement.”

Pig Latin
This section gives an informal description of the syntax and semantics of the Pig Latin
programming language.3 It is not meant to offer a complete reference to the language,
4 but there should be enough here for you to get a good understanding of Pig Latin’s
constructs.

Structure
A Pig Latin program consists of a collection of statements. A statement can be thought
of as an operation or a command.5 For example, a GROUP operation is a type of statement:

grouped_records = GROUP records BY year;

The command to list the files in a Hadoop filesystem is another example of a statement:
ls /

Statements are usually terminated with a semicolon, as in the example of the GROUP
statement. In fact, this is an example of a statement that must be terminated with a
semicolon; it is a syntax error to omit it. The ls command, on the other hand, does not
have to be terminated with a semicolon. As a general guideline, statements or commands
for interactive use in Grunt do not need the terminating semicolon. This group includes
the interactive Hadoop commands, as well as the diagnostic operators such as DE
SCRIBE. It’s never an error to add a terminating semicolon, so if in doubt, it’s simplest
to add one.

Statements that have to be terminated with a semicolon can be split across multiple lines
for readability:

records = LOAD 'input/ncdc/micro-tab/sample.txt'
  AS (year:chararray, temperature:int, quality:int);

Pig Latin has two forms of comments. Double hyphens are used for single-line com‐
ments. Everything from the first hyphen to the end of the line is ignored by the Pig Latin
interpreter:

-- My program
DUMP A; -- What's in A?
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C-style comments are more flexible since they delimit the beginning and end of the
comment block with /* and */ markers. They can span lines or be embedded in a single
line:

/* 
 * Description of my program spanning
 * multiple lines.
 */
A = LOAD 'input/pig/join/A';
B = LOAD 'input/pig/join/B';
C = JOIN A BY $0, /* ignored */ B BY $1;
DUMP C;

Pig Latin has a list of keywords that have a special meaning in the language and cannot
be used as identifiers. These include the operators (LOAD, ILLUSTRATE), commands (cat,
ls), expressions (matches, FLATTEN), and functions (DIFF, MAX)—all of which are cov‐
ered in the following sections.

Pig Latin has mixed rules on case sensitivity. Operators and commands are not case
sensitive (to make interactive use more forgiving); however, aliases and function names
are case sensitive.

Statements
As a Pig Latin program is executed, each statement is parsed in turn. If there are syntax
errors or other (semantic) problems, such as undefined aliases, the interpreter will halt
and display an error message. The interpreter builds a logical plan for every relational
operation, which forms the core of a Pig Latin program. The logical plan for the state‐
ment is added to the logical plan for the program so far, and then the interpreter moves
on to the next statement.

It’s important to note that no data processing takes place while the logical plan of the
program is being constructed. For example, consider again the Pig Latin program from
the first example:

-- max_temp.pig: Finds the maximum temperature by year
records = LOAD 'input/ncdc/micro-tab/sample.txt'
  AS (year:chararray, temperature:int, quality:int);
filtered_records = FILTER records BY temperature != 9999 AND
  quality IN (0, 1, 4, 5, 9);
grouped_records = GROUP filtered_records BY year;
max_temp = FOREACH grouped_records GENERATE group,
  MAX(filtered_records.temperature);
DUMP max_temp;

When the Pig Latin interpreter sees the first line containing the LOAD statement, it con‐
firms that it is syntactically and semantically correct and adds it to the logical plan, but
it does not load the data from the file (or even check whether the file exists). Indeed,
where would it load it? Into memory? Even if it did fit into memory, what would it do
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with the data? Perhaps not all the input data is needed (because later statements filter
it, for example), so it would be pointless to load it. The point is that it makes no sense
to start any processing until the whole flow is defined. Similarly, Pig validates the GROUP
and FOREACH...GENERATE statements, and adds them to the logical plan without exe‐
cuting them. The trigger for Pig to start execution is the DUMP statement. At that point,
the logical plan is compiled into a physical plan and executed.

Multiquery Execution
Because DUMP is a diagnostic tool, it will always trigger execution. However, the STORE
command is different. In interactive mode, STORE acts like DUMP and will always trigger
execution (this includes the run command), but in batch mode it will not (this includes
the exec command). The reason for this is efficiency. In batch mode, Pig will parse the
whole script to see whether there are any optimizations that could be made to limit the
amount of data to be written to or read from disk. Consider the following simple
example:

A = LOAD 'input/pig/multiquery/A';
B = FILTER A BY $1 == 'banana';
C = FILTER A BY $1 != 'banana';
STORE B INTO 'output/b';
STORE C INTO 'output/c';

Relations B and C are both derived from A, so to save reading A twice, Pig can run this
script as a single MapReduce job by reading A once and writing two output files from
the job, one for each of B and C. This feature is called multiquery execution.

In previous versions of Pig that did not have multiquery execution, each STORE statement
in a script run in batch mode triggered execution, resulting in a job for each STORE
statement. It is possible to restore the old behavior by disabling multiquery execution
with the -M or -no_multiquery option to pig.

The physical plan that Pig prepares is a series of MapReduce jobs, which in local mode
Pig runs in the local JVM and in MapReduce mode Pig runs on a Hadoop cluster.

You can see the logical and physical plans created by Pig using the
EXPLAIN command on a relation (EXPLAIN max_temp;, for example).
EXPLAIN will also show the MapReduce plan, which shows how the
physical operators are grouped into MapReduce jobs. This is a good
way to find out how many MapReduce jobs Pig will run for your
query.
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The relational operators that can be a part of a logical plan in Pig are summarized in
Table 16-1. We go through the operators in more detail in “Data Processing Opera‐
tors” on page 456.

Table 16-1. Pig Latin relational operators
Category Operator Description

Loading and storing LOAD Loads data from the filesystem or other storage into a relation

STORE Saves a relation to the filesystem or other storage

DUMP (\d) Prints a relation to the console

Filtering FILTER Removes unwanted rows from a relation

DISTINCT Removes duplicate rows from a relation

FOREACH...GENER

ATE

Adds or removes fields to or from a relation

MAPREDUCE Runs a MapReduce job using a relation as input

STREAM Transforms a relation using an external program

SAMPLE Selects a random sample of a relation

ASSERT Ensures a condition is true for all rows in a relation; otherwise, fails

Grouping and joining JOIN Joins two or more relations

COGROUP Groups the data in two or more relations

GROUP Groups the data in a single relation

CROSS Creates the cross product of two or more relations

CUBE Creates aggregations for all combinations of specified columns in a
relation

Sorting ORDER Sorts a relation by one or more fields

RANK Assign a rank to each tuple in a relation, optionally sorting by fields first

LIMIT Limits the size of a relation to a maximum number of tuples

Combining and splitting UNION Combines two or more relations into one

SPLIT Splits a relation into two or more relations

There are other types of statements that are not added to the logical plan. For example,
the diagnostic operators—DESCRIBE, EXPLAIN, and ILLUSTRATE—are provided to allow
the user to interact with the logical plan for debugging purposes (see Table 16-2). DUMP
is a sort of diagnostic operator, too, since it is used only to allow interactive debugging
of small result sets or in combination with LIMIT to retrieve a few rows from a larger
relation. The STORE statement should be used when the size of the output is more than
a few lines, as it writes to a file rather than to the console.
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Table 16-2. Pig Latin diagnostic operators
Operator (Shortcut) Description

DESCRIBE (\de) Prints a relation’s schema

EXPLAIN (\e) Prints the logical and physical plans

ILLUSTRATE (\i) Shows a sample execution of the logical plan, using a generated subset of the input

Pig Latin also provides three statements—REGISTER, DEFINE, and IMPORT—that make it
possible to incorporate macros and user-defined functions into Pig scripts (see
Table 16-3).

Table 16-3. Pig Latin macro and UDF statements
Statement Description

REGISTER Registers a JAR file with the Pig runtime

DEFINE Creates an alias for a macro, UDF, streaming script, or command specification

IMPORT Imports macros defined in a separate file into a script

Because they do not process relations, commands are not added to the logical plan;
instead, they are executed immediately. Pig provides commands to interact with Hadoop
filesystems (which are very handy for moving data around before or after processing
with Pig) and MapReduce, as well as a few utility commands (described in Table 16-4).

Table 16-4. Pig Latin commands
Category Command Description

Hadoop filesystem cat Prints the contents of one or more files

cd Changes the current directory

copyFromLocal Copies a local file or directory to a Hadoop filesystem

copyToLocal Copies a file or directory on a Hadoop filesystem to the local filesystem

cp Copies a file or directory to another directory

fs Accesses Hadoop’s filesystem shell

ls Lists files

mkdir Creates a new directory

mv Moves a file or directory to another directory

pwd Prints the path of the current working directory

rm Deletes a file or directory

rmf Forcibly deletes a file or directory (does not fail if the file or directory does not
exist)

Hadoop MapReduce kill Kills a MapReduce job
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Category Command Description

Utility clear Clears the screen in Grunt

exec Runs a script in a new Grunt shell in batch mode

help Shows the available commands and options

history Prints the query statements run in the current Grunt session

quit (\q) Exits the interpreter

run Runs a script within the existing Grunt shell

set Sets Pig options and MapReduce job properties

sh Runs a shell command from within Grunt

The filesystem commands can operate on files or directories in any Hadoop filesystem,
and they are very similar to the hadoop fs commands (which is not surprising, as both
are simple wrappers around the Hadoop FileSystem interface). You can access all of
the Hadoop filesystem shell commands using Pig’s fs command. For example, fs -ls
will show a file listing, and fs -help will show help on all the available commands.

Precisely which Hadoop filesystem is used is determined by the fs.defaultFS property
in the site file for Hadoop Core. See “The Command-Line Interface” on page 50 for
more details on how to configure this property.

These commands are mostly self-explanatory, except set, which is used to set options
that control Pig’s behavior (including arbitrary MapReduce job properties). The de
bug option is used to turn debug logging on or off from within a script (you can also
control the log level when launching Pig, using the -d or -debug option):

grunt> set debug on

Another useful option is the job.name option, which gives a Pig job a meaningful name,
making it easier to pick out your Pig MapReduce jobs when running on a shared Hadoop
cluster. If Pig is running a script (rather than operating as an interactive query from
Grunt), its job name defaults to a value based on the script name.

There are two commands in Table 16-4 for running a Pig script, exec and run. The
difference is that exec runs the script in batch mode in a new Grunt shell, so any aliases
defined in the script are not accessible to the shell after the script has completed. On
the other hand, when running a script with run, it is as if the contents of the script had
been entered manually, so the command history of the invoking shell contains all the
statements from the script. Multiquery execution, where Pig executes a batch of state‐
ments in one go (see “Multiquery Execution” on page 434), is used only by exec, not run.
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Control Flow
By design, Pig Latin lacks native control flow statements. The recommended approach
for writing programs that have conditional logic or loop constructs is to embed Pig Latin
in another language, such as Python, JavaScript, or Java, and manage the control flow
from there. In this model, the host script uses a compile-bind-run API to execute Pig
scripts and retrieve their status. Consult the Pig documentation for details of the API.

Embedded Pig programs always run in a JVM, so for Python and JavaScript you use the
pig command followed by the name of your script, and the appropriate Java scripting
engine will be selected (Jython for Python, Rhino for JavaScript).

Expressions
An expression is something that is evaluated to yield a value. Expressions can be used
in Pig as a part of a statement containing a relational operator. Pig has a rich variety of
expressions, many of which will be familiar from other programming languages. They
are listed in Table 16-5, with brief descriptions and examples. We will see examples of
many of these expressions throughout the chapter.

Table 16-5. Pig Latin expressions
Category Expressions Description Examples

Constant Literal Constant value (see also the “Literal
example” column in Table 16-6)

1.0, 'a'

Field (by position) $n Field in position n (zero-based) $0

Field (by name) f Field named f year

Field (disambiguate) r::f Field named f from relation r after
grouping or joining

A::year

Projection c.$n, c.f Field in container c (relation, bag, or
tuple) by position, by name

records.$0, records.year

Map lookup m#k Value associated with key k in map m items#'Coat'

Cast (t) f Cast of field f to type t (int) year

Arithmetic x + y, x - y Addition, subtraction $1 + $2, $1 - $2

x * y, x / y Multiplication, division $1 * $2, $1 / $2

x % y Modulo, the remainder of x divided
by y

$1 % $2

+x, -x Unary positive, negation +1, –1

Conditional x ? y : z Bincond/ternary; y if x evaluates to
true, z otherwise

quality == 0 ? 0 : 1

CASE Multi-case conditional CASE q WHEN 0 THEN 'good'

ELSE 'bad' END
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Category Expressions Description Examples

Comparison x == y, x != y Equals, does not equal quality == 0, tempera
ture != 9999

x > y, x < y Greater than, less than quality > 0, quality < 10

x >= y, x <= y Greater than or equal to, less than or
equal to

quality >= 1, quality <= 9

x matches y Pattern matching with regular
expression

quality matches '[01459]'

x is null Is null temperature is null

x is not null Is not null temperature is not null

Boolean x OR y Logical OR q == 0 OR q == 1

x AND y Logical AND q == 0 AND r == 0

NOT x Logical negation NOT q matches '[01459]'

IN x Set membership q IN (0, 1, 4, 5, 9)

Functional fn(f1,f2,...) Invocation of function fn on fields
f1, f2, etc.

isGood(quality)

Flatten FLATTEN(f) Removal of a level of nesting from
bags and tuples

FLATTEN(group)

Types
So far you have seen some of the simple types in Pig, such as int and chararray. Here
we will discuss Pig’s built-in types in more detail.

Pig has a boolean type and six numeric types: int, long, float, double, biginteger,
and bigdecimal, which are identical to their Java counterparts. There is also a bytearray
type, like Java’s byte array type for representing a blob of binary data, and chararray,
which, like java.lang.String, represents textual data in UTF-16 format (although it
can be loaded or stored in UTF-8 format). The datetime type is for storing a date and
time with millisecond precision and including a time zone.

Pig does not have types corresponding to Java’s byte, short, or char primitive types.
These are all easily represented using Pig’s int type, or chararray for char.

The Boolean, numeric, textual, binary, and temporal types are simple atomic types. Pig
Latin also has three complex types for representing nested structures: tuple, bag, and
map. All of Pig Latin’s types are listed in Table 16-6.
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Table 16-6. Pig Latin types
Category Type Description Literal example

Boolean boolean True/false value true

Numeric int 32-bit signed integer 1

long 64-bit signed integer 1L

float 32-bit floating-point number 1.0F

double 64-bit floating-point number 1.0

biginteger Arbitrary-precision integer '10000000000'

bigdecimal Arbitrary-precision signed decimal number '0.110001000000000000000001'

Text chararray Character array in UTF-16 format 'a'

Binary bytearray Byte array Not supported

Temporal datetime Date and time with time zone Not supported, use ToDate built-in function

Complex tuple Sequence of fields of any type (1,'pomegranate')

bag Unordered collection of tuples, possibly with
duplicates

{(1,'pomegranate'),(2)}

map Set of key-value pairs; keys must be character
arrays, but values may be any type

['a'#'pomegranate']

The complex types are usually loaded from files or constructed using relational opera‐
tors. Be aware, however, that the literal form in Table 16-6 is used when a constant value
is created from within a Pig Latin program. The raw form in a file is usually different
when using the standard PigStorage loader. For example, the representation in a file
of the bag in Table 16-6 would be {(1,pomegranate),(2)} (note the lack of quotation
marks), and with a suitable schema, this would be loaded as a relation with a single field
and row, whose value was the bag.

Pig provides the built-in functions TOTUPLE, TOBAG, and TOMAP, which are used for turn‐
ing expressions into tuples, bags, and maps.

Although relations and bags are conceptually the same (unordered collections of tuples),
in practice Pig treats them slightly differently. A relation is a top-level construct, whereas
a bag has to be contained in a relation. Normally you don’t have to worry about this,
but there are a few restrictions that can trip up the uninitiated. For example, it’s not
possible to create a relation from a bag literal. So, the following statement fails:

A = {(1,2),(3,4)}; -- Error

The simplest workaround in this case is to load the data from a file using the LOAD
statement.

As another example, you can’t treat a relation like a bag and project a field into a new
relation ($0 refers to the first field of A, using the positional notation):

B = A.$0;
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Instead, you have to use a relational operator to turn the relation A into relation B:
B = FOREACH A GENERATE $0;

It’s possible that a future version of Pig Latin will remove these inconsistencies and treat
relations and bags in the same way.

Schemas
A relation in Pig may have an associated schema, which gives the fields in the relation
names and types. We’ve seen how an AS clause in a LOAD statement is used to attach a
schema to a relation:

grunt> records = LOAD 'input/ncdc/micro-tab/sample.txt'
>>   AS (year:int, temperature:int, quality:int);
grunt> DESCRIBE records;
records: {year: int,temperature: int,quality: int}

This time we’ve declared the year to be an integer rather than a chararray, even though
the file it is being loaded from is the same. An integer may be more appropriate if we
need to manipulate the year arithmetically (to turn it into a timestamp, for example),
whereas the chararray representation might be more appropriate when it’s being used
as a simple identifier. Pig’s flexibility in the degree to which schemas are declared con‐
trasts with schemas in traditional SQL databases, which are declared before the data is
loaded into the system. Pig is designed for analyzing plain input files with no associated
type information, so it is quite natural to choose types for fields later than you would
with an RDBMS.

It’s possible to omit type declarations completely, too:
grunt> records = LOAD 'input/ncdc/micro-tab/sample.txt'
>>   AS (year, temperature, quality);
grunt> DESCRIBE records;
records: {year: bytearray,temperature: bytearray,quality: bytearray}

In this case, we have specified only the names of the fields in the schema: year,
temperature, and quality. The types default to bytearray, the most general type,
representing a binary string.

You don’t need to specify types for every field; you can leave some to default to
bytearray, as we have done for year in this declaration:

grunt> records = LOAD 'input/ncdc/micro-tab/sample.txt'
>>   AS (year, temperature:int, quality:int);
grunt> DESCRIBE records;
records: {year: bytearray,temperature: int,quality: int}

However, if you specify a schema in this way, you do need to specify every field. Also,
there’s no way to specify the type of a field without specifying the name. On the other
hand, the schema is entirely optional and can be omitted by not specifying an AS clause:
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grunt> records = LOAD 'input/ncdc/micro-tab/sample.txt';
grunt> DESCRIBE records;
Schema for records unknown.

Fields in a relation with no schema can be referenced using only positional notation: $0
refers to the first field in a relation, $1 to the second, and so on. Their types default to
bytearray:

grunt> projected_records = FOREACH records GENERATE $0, $1, $2;
grunt> DUMP projected_records;
(1950,0,1)
(1950,22,1)
(1950,-11,1)
(1949,111,1)
(1949,78,1)
grunt> DESCRIBE projected_records;
projected_records: {bytearray,bytearray,bytearray}

Although it can be convenient not to assign types to fields (particularly in the first stages
of writing a query), doing so can improve the clarity and efficiency of Pig Latin programs
and is generally recommended.

Using Hive tables with HCatalog

Declaring a schema as a part of the query is flexible but doesn’t lend itself to schema
reuse. A set of Pig queries over the same input data will often have the same schema
repeated in each query. If the query processes a large number of fields, this repetition
can become hard to maintain.

HCatalog (which is a component of Hive) solves this problem by providing access to
Hive’s metastore, so that Pig queries can reference schemas by name, rather than spec‐
ifying them in full each time. For example, after running through “An Example” on page
474 to load data into a Hive table called records, Pig can access the table’s schema and
data as follows:

% pig -useHCatalog
grunt> records = LOAD 'records' USING org.apache.hcatalog.pig.HCatLoader();
grunt> DESCRIBE records;
records: {year: chararray,temperature: int,quality: int}
grunt> DUMP records;
(1950,0,1)
(1950,22,1)
(1950,-11,1)
(1949,111,1)
(1949,78,1)

Validation and nulls

A SQL database will enforce the constraints in a table’s schema at load time; for example,
trying to load a string into a column that is declared to be a numeric type will fail. In
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Pig, if the value cannot be cast to the type declared in the schema, it will substitute a
null value. Let’s see how this works when we have the following input for the weather
data, which has an “e” character in place of an integer:

1950 0   1
1950 22  1
1950 e   1
1949 111 1
1949 78  1

Pig handles the corrupt line by producing a null for the offending value, which is
displayed as the absence of a value when dumped to screen (and also when saved using
STORE):

grunt> records = LOAD 'input/ncdc/micro-tab/sample_corrupt.txt'
>>   AS (year:chararray, temperature:int, quality:int);
grunt> DUMP records;
(1950,0,1)
(1950,22,1)
(1950,,1)
(1949,111,1)
(1949,78,1)

Pig produces a warning for the invalid field (not shown here) but does not halt its
processing. For large datasets, it is very common to have corrupt, invalid, or merely
unexpected data, and it is generally infeasible to incrementally fix every unparsable
record. Instead, we can pull out all of the invalid records in one go so we can take action
on them, perhaps by fixing our program (because they indicate that we have made a
mistake) or by filtering them out (because the data is genuinely unusable):

grunt> corrupt_records = FILTER records BY temperature is null;
grunt> DUMP corrupt_records;
(1950,,1)

Note the use of the is null operator, which is analogous to SQL. In practice, we would
include more information from the original record, such as an identifier and the value
that could not be parsed, to help our analysis of the bad data.

We can find the number of corrupt records using the following idiom for counting the
number of rows in a relation:

grunt> grouped = GROUP corrupt_records ALL;
grunt> all_grouped = FOREACH grouped GENERATE group, COUNT(corrupt_records);
grunt> DUMP all_grouped;
(all,1)

(“GROUP” on page 464 explains grouping and the ALL operation in more detail.)

Another useful technique is to use the SPLIT operator to partition the data into “good”
and “bad” relations, which can then be analyzed separately:
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grunt> SPLIT records INTO good_records IF temperature is not null,
>>   bad_records OTHERWISE;
grunt> DUMP good_records;
(1950,0,1)
(1950,22,1)
(1949,111,1)
(1949,78,1)
grunt> DUMP bad_records;
(1950,,1)

Going back to the case in which temperature’s type was left undeclared, the corrupt
data cannot be detected easily, since it doesn’t surface as a null:

grunt> records = LOAD 'input/ncdc/micro-tab/sample_corrupt.txt'
>>   AS (year:chararray, temperature, quality:int);
grunt> DUMP records;
(1950,0,1)
(1950,22,1)
(1950,e,1)
(1949,111,1)
(1949,78,1)
grunt> filtered_records = FILTER records BY temperature != 9999 AND
>>   quality IN (0, 1, 4, 5, 9);
grunt> grouped_records = GROUP filtered_records BY year;
grunt> max_temp = FOREACH grouped_records GENERATE group,
>>   MAX(filtered_records.temperature);
grunt> DUMP max_temp;
(1949,111.0)
(1950,22.0)

What happens in this case is that the temperature field is interpreted as a bytearray,
so the corrupt field is not detected when the input is loaded. When passed to the MAX
function, the temperature field is cast to a double, since MAX works only with numeric
types. The corrupt field cannot be represented as a double, so it becomes a null, which
MAX silently ignores. The best approach is generally to declare types for your data on
loading and look for missing or corrupt values in the relations themselves before you
do your main processing.

Sometimes corrupt data shows up as smaller tuples because fields are simply missing.
You can filter these out by using the SIZE function as follows:

grunt> A = LOAD 'input/pig/corrupt/missing_fields';
grunt> DUMP A;
(2,Tie)
(4,Coat)
(3)
(1,Scarf)
grunt> B = FILTER A BY SIZE(TOTUPLE(*)) > 1;
grunt> DUMP B;
(2,Tie)
(4,Coat)
(1,Scarf)
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Schema merging

In Pig, you don’t declare the schema for every new relation in the data flow. In most
cases, Pig can figure out the resulting schema for the output of a relational operation
by considering the schema of the input relation.

How are schemas propagated to new relations? Some relational operators don’t change
the schema, so the relation produced by the LIMIT operator (which restricts a relation
to a maximum number of tuples), for example, has the same schema as the relation it
operates on. For other operators, the situation is more complicated. UNION, for
example, combines two or more relations into one and tries to merge the input relations’
schemas. If the schemas are incompatible, due to different types or number of fields,
then the schema of the result of the UNION is unknown.

You can find out the schema for any relation in the data flow using the DESCRIBE
operator. If you want to redefine the schema for a relation, you can use the FORE
ACH...GENERATE operator with AS clauses to define the schema for some or all of the
fields of the input relation.

See “User-Defined Functions” on page 448 for a further discussion of schemas.

Functions
Functions in Pig come in four types:
Eval function

A function that takes one or more expressions and returns another expression. An
example of a built-in eval function is MAX, which returns the maximum value of the
entries in a bag. Some eval functions are aggregate functions, which means they
operate on a bag of data to produce a scalar value; MAX is an example of an aggregate
function. Furthermore, many aggregate functions are algebraic, which means that
the result of the function may be calculated incrementally. In MapReduce terms,
algebraic functions make use of the combiner and are much more efficient to
calculate (see “Combiner Functions” on page 34). MAX is an algebraic function,
whereas a function to calculate the median of a collection of values is an example
of a function that is not algebraic.

Filter function
A special type of eval function that returns a logical Boolean result. As the name
suggests, filter functions are used in the FILTER operator to remove unwanted rows.
They can also be used in other relational operators that take Boolean conditions,
and in general, in expressions using Boolean or conditional expressions. An ex‐
ample of a built-in filter function is IsEmpty, which tests whether a bag or a map
contains any items.

Pig Latin | 445



Load function
A function that specifies how to load data into a relation from external storage.

Store function
A function that specifies how to save the contents of a relation to external storage.
Often, load and store functions are implemented by the same type. For example,
PigStorage, which loads data from delimited text files, can store data in the same
format.

Pig comes with a collection of built-in functions, a selection of which are listed in
Table 16-7. The complete list of built-in functions, which includes a large number of
standard math, string, date/time, and collection functions, can be found in the docu‐
mentation for each Pig release.

Table 16-7. A selection of Pig’s built-in functions
Category Function Description

Eval AVG Calculates the average (mean) value of entries in a bag.

 CONCAT Concatenates byte arrays or character arrays together.

 COUNT Calculates the number of non-null entries in a bag.

 COUNT_STAR Calculates the number of entries in a bag, including those that are null.

 DIFF Calculates the set difference of two bags. If the two arguments are not bags,
returns a bag containing both if they are equal; otherwise, returns an empty
bag.

 MAX Calculates the maximum value of entries in a bag.

 MIN Calculates the minimum value of entries in a bag.

 SIZE Calculates the size of a type. The size of numeric types is always 1; for character
arrays, it is the number of characters; for byte arrays, the number of bytes; and
for containers (tuple, bag, map), it is the number of entries.

 SUM Calculates the sum of the values of entries in a bag.

 TOBAG Converts one or more expressions to individual tuples, which are then put in a
bag. A synonym for ().

 TOKENIZE Tokenizes a character array into a bag of its constituent words.

 TOMAP Converts an even number of expressions to a map of key-value pairs. A synonym
for [].

 TOP Calculates the top n tuples in a bag.

 TOTUPLE Converts one or more expressions to a tuple. A synonym for {}.

Filter IsEmpty Tests whether a bag or map is empty.

Load/Store PigStorage Loads or stores relations using a field-delimited text format. Each line is broken
into fields using a configurable field delimiter (defaults to a tab character) to be
stored in the tuple’s fields. It is the default storage when none is specified.a

 TextLoader Loads relations from a plain-text format. Each line corresponds to a tuple whose
single field is the line of text.
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Category Function Description

 JsonLoader, JsonStor
age

Loads or stores relations from or to a (Pig-defined) JSON format. Each tuple is
stored on one line.

 AvroStorage Loads or stores relations from or to Avro datafiles.

 ParquetLoader, Par
quetStorer

Loads or stores relations from or to Parquet files.

 OrcStorage Loads or stores relations from or to Hive ORCFiles.

 HBaseStorage Loads or stores relations from or to HBase tables.
a The default storage can be changed by setting pig.default.load.func and pig.default.store.func to the
fully qualified load and store function classnames.

Other libraries

If the function you need is not available, you can write your own user-defined function
(or UDF for short), as explained in “User-Defined Functions” on page 448. Before you do
that, however, have a look in the Piggy Bank, a library of Pig functions shared by the
Pig community and distributed as a part of Pig. For example, there are load and store
functions in the Piggy Bank for CSV files, Hive RCFiles, sequence files, and XML files.
The Piggy Bank JAR file comes with Pig, and you can use it with no further configura‐
tion. Pig’s API documentation includes a list of functions provided by the Piggy Bank.

Apache DataFu is another rich library of Pig UDFs. In addition to general utility func‐
tions, it includes functions for computing basic statistics, performing sampling and
estimation, hashing, and working with web data (sessionization, link analysis).

Macros
Macros provide a way to package reusable pieces of Pig Latin code from within Pig Latin
itself. For example, we can extract the part of our Pig Latin program that performs
grouping on a relation and then finds the maximum value in each group by defining a
macro as follows:

DEFINE max_by_group(X, group_key, max_field) RETURNS Y {
  A = GROUP $X by $group_key;
  $Y = FOREACH A GENERATE group, MAX($X.$max_field);
};

The macro, called max_by_group, takes three parameters: a relation, X, and two field
names, group_key and max_field. It returns a single relation, Y. Within the macro body,
parameters and return aliases are referenced with a $ prefix, such as $X.

The macro is used as follows:
records = LOAD 'input/ncdc/micro-tab/sample.txt'
  AS (year:chararray, temperature:int, quality:int);
filtered_records = FILTER records BY temperature != 9999 AND
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  quality IN (0, 1, 4, 5, 9);
max_temp = max_by_group(filtered_records, year, temperature);
DUMP max_temp

At runtime, Pig will expand the macro using the macro definition. After expansion, the
program looks like the following, with the expanded section in bold:

records = LOAD 'input/ncdc/micro-tab/sample.txt'
  AS (year:chararray, temperature:int, quality:int);
filtered_records = FILTER records BY temperature != 9999 AND
  quality IN (0, 1, 4, 5, 9);
macro_max_by_group_A_0 = GROUP filtered_records by (year);
max_temp = FOREACH macro_max_by_group_A_0 GENERATE group,
  MAX(filtered_records.(temperature));
DUMP max_temp

Normally you don’t see the expanded form, because Pig creates it internally; however,
in some cases it is useful to see it when writing and debugging macros. You can get Pig
to perform macro expansion only (without executing the script) by passing the -dryrun
argument to pig.

Notice that the parameters that were passed to the macro (filtered_records, year,
and temperature) have been substituted for the names in the macro definition. Aliases
in the macro definition that don’t have a $ prefix, such as A in this example, are local to
the macro definition and are rewritten at expansion time to avoid conflicts with aliases
in other parts of the program. In this case, A becomes macro_max_by_group_A_0 in the
expanded form.

To foster reuse, macros can be defined in separate files to Pig scripts, in which case they
need to be imported into any script that uses them. An import statement looks like this:

IMPORT './ch16-pig/src/main/pig/max_temp.macro';

User-Defined Functions
Pig’s designers realized that the ability to plug in custom code is crucial for all but the
most trivial data processing jobs. For this reason, they made it easy to define and use
user-defined functions. We only cover Java UDFs in this section, but be aware that you
can also write UDFs in Python, JavaScript, Ruby, or Groovy, all of which are run using
the Java Scripting API.

A Filter UDF
Let’s demonstrate by writing a filter function for filtering out weather records that do
not have a temperature quality reading of satisfactory (or better). The idea is to change
this line:

filtered_records = FILTER records BY temperature != 9999 AND
  quality IN (0, 1, 4, 5, 9);
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to:
filtered_records = FILTER records BY temperature != 9999 AND isGood(quality);

This achieves two things: it makes the Pig script a little more concise, and it encapsulates
the logic in one place so that it can be easily reused in other scripts. If we were just
writing an ad hoc query, we probably wouldn’t bother to write a UDF. It’s when you start
doing the same kind of processing over and over again that you see opportunities for
reusable UDFs.

Filter UDFs are all subclasses of FilterFunc, which itself is a subclass of EvalFunc. We’ll
look at EvalFunc in more detail later, but for the moment just note that, in essence,
EvalFunc looks like the following class:

public abstract class EvalFunc<T> {
  public abstract T exec(Tuple input) throws IOException;
}

EvalFunc’s only abstract method, exec(), takes a tuple and returns a single value, the
(parameterized) type T. The fields in the input tuple consist of the expressions passed
to the function—in this case, a single integer. For FilterFunc, T is Boolean, so the
method should return true only for those tuples that should not be filtered out.

For the quality filter, we write a class, IsGoodQuality, that extends FilterFunc and
implements the exec() method (see Example 16-1). The Tuple class is essentially a list
of objects with associated types. Here we are concerned only with the first field (since
the function only has a single argument), which we extract by index using the get()
method on Tuple. The field is an integer, so if it’s not null, we cast it and check whether
the value is one that signifies the temperature was a good reading, returning the ap‐
propriate value, true or false.

Example 16-1. A FilterFunc UDF to remove records with unsatisfactory temperature
quality readings
package com.hadoopbook.pig;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.pig.FilterFunc;
 
import org.apache.pig.backend.executionengine.ExecException;
import org.apache.pig.data.DataType;
import org.apache.pig.data.Tuple;
import org.apache.pig.impl.logicalLayer.FrontendException;

public class IsGoodQuality extends FilterFunc {

  @Override
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  public Boolean exec(Tuple tuple) throws IOException {
    if (tuple == null || tuple.size() == 0) {
      return false;
    }
    try {
      Object object = tuple.get(0);
      if (object == null) {
        return false;
      }
      int i = (Integer) object;
      return i == 0 || i == 1 || i == 4 || i == 5 || i == 9;
    } catch (ExecException e) {
      throw new IOException(e);
    }
  }
 
}

To use the new function, we first compile it and package it in a JAR file (the example
code that accompanies this book comes with build instructions for how to do this). Then
we tell Pig about the JAR file with the REGISTER operator, which is given the local path
to the filename (and is not enclosed in quotes):

grunt> REGISTER pig-examples.jar;

Finally, we can invoke the function:
grunt> filtered_records = FILTER records BY temperature != 9999 AND
>>   com.hadoopbook.pig.IsGoodQuality(quality);

Pig resolves function calls by treating the function’s name as a Java classname and at‐
tempting to load a class of that name. (This, incidentally, is why function names are case
sensitive: because Java classnames are.) When searching for classes, Pig uses a class‐
loader that includes the JAR files that have been registered. When running in distributed
mode, Pig will ensure that your JAR files get shipped to the cluster.

For the UDF in this example, Pig looks for a class with the name com.hadoop
book.pig.IsGoodQuality, which it finds in the JAR file we registered.

Resolution of built-in functions proceeds in the same way, except for one difference:
Pig has a set of built-in package names that it searches, so the function call does not
have to be a fully qualified name. For example, the function MAX is actually implemented
by a class MAX in the package org.apache.pig.builtin. This is one of the packages that
Pig looks in, so we can write MAX rather than org.apache.pig.builtin.MAX in our Pig
programs.

We can add our package name to the search path by invoking Grunt with this command-
line argument: -Dudf.import.list=com.hadoopbook.pig. Alternatively, we can short‐
en the function name by defining an alias, using the DEFINE operator:
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grunt> DEFINE isGood com.hadoopbook.pig.IsGoodQuality();
grunt> filtered_records = FILTER records BY temperature != 9999 AND
>>   isGood(quality);

Defining an alias is a good idea if you want to use the function several times in the same
script. It’s also necessary if you want to pass arguments to the constructor of the UDF’s
implementation class.

If you add the lines to register JAR files and define function aliases to
the .pigbootup file in your home directory, they will be run whenev‐
er you start Pig.

Leveraging types

The filter works when the quality field is declared to be of type int, but if the type
information is absent, the UDF fails! This happens because the field is the default type,
bytearray, represented by the DataByteArray class. Because DataByteArray is not an
Integer, the cast fails.

The obvious way to fix this is to convert the field to an integer in the exec() method.
However, there is a better way, which is to tell Pig the types of the fields that the function
expects. The getArgToFuncMapping() method on EvalFunc is provided for precisely
this reason. We can override it to tell Pig that the first field should be an integer:

  @Override
  public List<FuncSpec> getArgToFuncMapping() throws FrontendException {
    List<FuncSpec> funcSpecs = new ArrayList<FuncSpec>();
    funcSpecs.add(new FuncSpec(this.getClass().getName(),
        new Schema(new Schema.FieldSchema(null, DataType.INTEGER))));

    return funcSpecs;
  }

This method returns a FuncSpec object corresponding to each of the fields of the tuple
that are passed to the exec() method. Here there is a single field, and we construct an
anonymous FieldSchema (the name is passed as null, since Pig ignores the name when
doing type conversion). The type is specified using the INTEGER constant on Pig’s
DataType class.

With the amended function, Pig will attempt to convert the argument passed to the
function to an integer. If the field cannot be converted, then a null is passed for the
field. The exec() method always returns false when the field is null. For this
application, this behavior is appropriate, as we want to filter out records whose quality
field is unintelligible.
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6. Pig actually comes with an equivalent built-in function called TRIM.

7. Although not relevant for this example, eval functions that operate on a bag may additionally implement Pig’s
Algebraic or Accumulator interfaces for more efficient processing of the bag in chunks.

An Eval UDF
Writing an eval function is a small step up from writing a filter function. Consider the
UDF in Example 16-2, which trims the leading and trailing whitespace from chararray
values using the trim() method on java.lang.String.6

Example 16-2. An EvalFunc UDF to trim leading and trailing whitespace from charar‐
ray values
public class Trim extends PrimitiveEvalFunc<String, String> {
  @Override
  public String exec(String input) {
    return input.trim();
  }
}

In this case, we have taken advantage of PrimitiveEvalFunc, which is a specialization
of EvalFunc for when the input is a single primitive (atomic) type. For the Trim UDF,
the input and output types are both of type String.7

In general, when you write an eval function, you need to consider what the output’s
schema looks like. In the following statement, the schema of B is determined by the
function udf:

B = FOREACH A GENERATE udf($0);

If udf creates tuples with scalar fields, then Pig can determine B’s schema through re‐
flection. For complex types such as bags, tuples, or maps, Pig needs more help, and you
should implement the outputSchema() method to give Pig the information about the
output schema.

The Trim UDF returns a string, which Pig translates as a chararray, as can be seen from
the following session:

grunt> DUMP A;
( pomegranate)
(banana  )
(apple)
(  lychee )
grunt> DESCRIBE A;
A: {fruit: chararray}
grunt> B = FOREACH A GENERATE com.hadoopbook.pig.Trim(fruit);
grunt> DUMP B;
(pomegranate)
(banana)
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8. There is a more fully featured UDF for doing the same thing in the Piggy Bank called FixedWidthLoader.

(apple)
(lychee)
grunt> DESCRIBE B;
B: {chararray}

A has chararray fields that have leading and trailing spaces. We create B from A by
applying the Trim function to the first field in A (named fruit). B’s fields are correctly
inferred to be of type chararray.

Dynamic invokers

Sometimes you want to use a function that is provided by a Java library, but without
going to the effort of writing a UDF. Dynamic invokers allow you to do this by calling
Java methods directly from a Pig script. The trade-off is that method calls are made via
reflection, which can impose significant overhead when calls are made for every record
in a large dataset. So for scripts that are run repeatedly, a dedicated UDF is normally
preferred.

The following snippet shows how we could define and use a trim UDF that uses the
Apache Commons Lang StringUtils class:

grunt> DEFINE trim InvokeForString('org.apache.commons.lang.StringUtils.trim',
>>   'String');
grunt> B = FOREACH A GENERATE trim(fruit);
grunt> DUMP B;
(pomegranate)
(banana)
(apple)
(lychee)

The InvokeForString invoker is used because the return type of the method is a
String. (There are also InvokeForInt, InvokeForLong, InvokeForDouble, and Invoke
ForFloat invokers.) The first argument to the invoker constructor is the fully qualified
method to be invoked. The second is a space-separated list of the method argument 
classes.

A Load UDF
We’ll demonstrate a custom load function that can read plain-text column ranges as
fields, very much like the Unix cut command.8 It is used as follows:

grunt> records = LOAD 'input/ncdc/micro/sample.txt'
>>   USING com.hadoopbook.pig.CutLoadFunc('16-19,88-92,93-93')
>>   AS (year:int, temperature:int, quality:int);
grunt> DUMP records;
(1950,0,1)
(1950,22,1)
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(1950,-11,1)
(1949,111,1)
(1949,78,1)

The string passed to CutLoadFunc is the column specification; each comma-separated
range defines a field, which is assigned a name and type in the AS clause. Let’s examine
the implementation of CutLoadFunc, shown in Example 16-3.

Example 16-3. A LoadFunc UDF to load tuple fields as column ranges
public class CutLoadFunc extends LoadFunc {

  private static final Log LOG = LogFactory.getLog(CutLoadFunc.class);

  private final List<Range> ranges;
  private final TupleFactory tupleFactory = TupleFactory.getInstance();
  private RecordReader reader;

  public CutLoadFunc(String cutPattern) {
    ranges = Range.parse(cutPattern);
  }
  
  @Override
  public void setLocation(String location, Job job)
      throws IOException {
    FileInputFormat.setInputPaths(job, location);
  }
  
  @Override
  public InputFormat getInputFormat() {
    return new TextInputFormat();
  }
  
  @Override
  public void prepareToRead(RecordReader reader, PigSplit split) {
    this.reader = reader;
  }

  @Override
  public Tuple getNext() throws IOException {
    try {
      if (!reader.nextKeyValue()) {
        return null;
      }
      Text value = (Text) reader.getCurrentValue();
      String line = value.toString();
      Tuple tuple = tupleFactory.newTuple(ranges.size());
      for (int i = 0; i < ranges.size(); i++) {
        Range range = ranges.get(i);
        if (range.getEnd() > line.length()) {
          LOG.warn(String.format(
              "Range end (%s) is longer than line length (%s)",
              range.getEnd(), line.length()));
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          continue;
        }
        tuple.set(i, new DataByteArray(range.getSubstring(line)));
      }
      return tuple;
    } catch (InterruptedException e) {
      throw new ExecException(e);
    }
  }
}

In Pig, like in Hadoop, data loading takes place before the mapper runs, so it is important
that the input can be split into portions that are handled independently by each mapper
(see “Input Splits and Records” on page 220 for background). A LoadFunc will typically
use an existing underlying Hadoop InputFormat to create records, with the LoadFunc
providing the logic for turning the records into Pig tuples.

CutLoadFunc is constructed with a string that specifies the column ranges to use for
each field. The logic for parsing this string and creating a list of internal Range objects
that encapsulates these ranges is contained in the Range class, and is not shown here (it
is available in the example code that accompanies this book).

Pig calls setLocation() on a LoadFunc to pass the input location to the loader. Since
CutLoadFunc uses a TextInputFormat to break the input into lines, we just pass the
location to set the input path using a static method on FileInputFormat.

Pig uses the new MapReduce API, so we use the input and output
formats and associated classes from the org.apache.hadoop.mapre
duce package.

Next, Pig calls the getInputFormat() method to create a RecordReader for each split,
just like in MapReduce. Pig passes each RecordReader to the prepareToRead() method
of CutLoadFunc, which we store a reference to, so we can use it in the getNext() method
for iterating through the records.

The Pig runtime calls getNext() repeatedly, and the load function reads tuples from
the reader until the reader reaches the last record in its split. At this point, it returns
null to signal that there are no more tuples to be read.

It is the responsibility of the getNext() implementation to turn lines of the input file
into Tuple objects. It does this by means of a TupleFactory, a Pig class for creating
Tuple instances. The newTuple() method creates a new tuple with the required number
of fields, which is just the number of Range classes, and the fields are populated using
substrings of the line, which are determined by the Range objects.
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We need to think about what to do when the line is shorter than the range asked for.
One option is to throw an exception and stop further processing. This is appropriate if
your application cannot tolerate incomplete or corrupt records. In many cases, it is
better to return a tuple with null fields and let the Pig script handle the incomplete data
as it sees fit. This is the approach we take here; by exiting the for loop if the range end
is past the end of the line, we leave the current field and any subsequent fields in the
tuple with their default values of null.

Using a schema

Let’s now consider the types of the fields being loaded. If the user has specified a schema,
then the fields need to be converted to the relevant types. However, this is performed
lazily by Pig, so the loader should always construct tuples of type bytearrary, using the
DataByteArray type. The load function still has the opportunity to do the conversion,
however, by overriding getLoadCaster() to return a custom implementation of the
LoadCaster interface, which provides a collection of conversion methods for this
purpose.

CutLoadFunc doesn’t override getLoadCaster() because the default implementation
returns Utf8StorageConverter, which provides standard conversions between
UTF-8–encoded data and Pig data types.

In some cases, the load function itself can determine the schema. For example, if we
were loading self-describing data such as XML or JSON, we could create a schema for
Pig by looking at the data. Alternatively, the load function may determine the schema
in another way, such as from an external file, or by being passed information in its
constructor. To support such cases, the load function should implement the LoadMeta
data interface (in addition to the LoadFunc interface) so it can supply a schema to the
Pig runtime. Note, however, that if a user supplies a schema in the AS clause of LOAD,
then it takes precedence over the schema specified through the LoadMetadata interface.

A load function may additionally implement the LoadPushDown interface as a means for
finding out which columns the query is asking for. This can be a useful optimization
for column-oriented storage, so that the loader loads only the columns that are needed
by the query. There is no obvious way for CutLoadFunc to load only a subset of columns,
because it reads the whole line for each tuple, so we don’t use this optimization.

Data Processing Operators
Loading and Storing Data
Throughout this chapter, we have seen how to load data from external storage for pro‐
cessing in Pig. Storing the results is straightforward, too. Here’s an example of using
PigStorage to store tuples as plain-text values separated by a colon character:
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grunt> STORE A INTO 'out' USING PigStorage(':');
grunt> cat out
Joe:cherry:2
Ali:apple:3
Joe:banana:2
Eve:apple:7

Other built-in storage functions were described in Table 16-7.

Filtering Data
Once you have some data loaded into a relation, often the next step is to filter it to
remove the data that you are not interested in. By filtering early in the processing pipe‐
line, you minimize the amount of data flowing through the system, which can improve
efficiency.

FOREACH...GENERATE

We have already seen how to remove rows from a relation using the FILTER operator
with simple expressions and a UDF. The FOREACH...GENERATE operator is used to act
on every row in a relation. It can be used to remove fields or to generate new ones. In
this example, we do both:

grunt> DUMP A;
(Joe,cherry,2)
(Ali,apple,3)
(Joe,banana,2)
(Eve,apple,7)
grunt> B = FOREACH A GENERATE $0, $2+1, 'Constant';
grunt> DUMP B;
(Joe,3,Constant)
(Ali,4,Constant)
(Joe,3,Constant)
(Eve,8,Constant)

Here we have created a new relation, B, with three fields. Its first field is a projection of
the first field ($0) of A. B’s second field is the third field of A ($2) with 1 added to it. B’s
third field is a constant field (every row in B has the same third field) with the charar
ray value Constant.

The FOREACH...GENERATE operator has a nested form to support more complex pro‐
cessing. In the following example, we compute various statistics for the weather dataset:

-- year_stats.pig
REGISTER pig-examples.jar;
DEFINE isGood com.hadoopbook.pig.IsGoodQuality();
records = LOAD 'input/ncdc/all/19{1,2,3,4,5}0*'
  USING com.hadoopbook.pig.CutLoadFunc('5-10,11-15,16-19,88-92,93-93')
  AS (usaf:chararray, wban:chararray, year:int, temperature:int, quality:int);
  
grouped_records = GROUP records BY year PARALLEL 30;
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year_stats = FOREACH grouped_records {
  uniq_stations = DISTINCT records.usaf;
  good_records = FILTER records BY isGood(quality);
  GENERATE FLATTEN(group), COUNT(uniq_stations) AS station_count,
    COUNT(good_records) AS good_record_count, COUNT(records) AS record_count;
}

DUMP year_stats;

Using the cut UDF we developed earlier, we load various fields from the input dataset
into the records relation. Next, we group records by year. Notice the PARALLEL keyword
for setting the number of reducers to use; this is vital when running on a cluster. Then
we process each group using a nested FOREACH...GENERATE operator. The first nested
statement creates a relation for the distinct USAF identifiers for stations using the 
DISTINCT operator. The second nested statement creates a relation for the records with
“good” readings using the FILTER operator and a UDF. The final nested statement is a
GENERATE statement (a nested FOREACH...GENERATE must always have a GENERATE state‐
ment as the last nested statement) that generates the summary fields of interest using
the grouped records, as well as the relations created in the nested block.

Running it on a few years’ worth of data, we get the following:
(1920,8L,8595L,8595L)
(1950,1988L,8635452L,8641353L)
(1930,121L,89245L,89262L)
(1910,7L,7650L,7650L)
(1940,732L,1052333L,1052976L)

The fields are year, number of unique stations, total number of good readings, and total
number of readings. We can see how the number of weather stations and readings grew
over time.

STREAM

The STREAM operator allows you to transform data in a relation using an external pro‐
gram or script. It is named by analogy with Hadoop Streaming, which provides a similar
capability for MapReduce (see “Hadoop Streaming” on page 37).

STREAM can use built-in commands with arguments. Here is an example that uses the
Unix cut command to extract the second field of each tuple in A. Note that the command
and its arguments are enclosed in backticks:

grunt> C = STREAM A THROUGH `cut -f 2`;
grunt> DUMP C;
(cherry)
(apple)
(banana)
(apple)
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The STREAM operator uses PigStorage to serialize and deserialize relations to and from
the program’s standard input and output streams. Tuples in A are converted to tab-
delimited lines that are passed to the script. The output of the script is read one line at
a time and split on tabs to create new tuples for the output relation C. You can provide
a custom serializer and deserializer by subclassing PigStreamingBase (in the
org.apache.pig package), then using the DEFINE operator.

Pig streaming is most powerful when you write custom processing scripts. The following
Python script filters out bad weather records:

#!/usr/bin/env python

import re
import sys

for line in sys.stdin:
  (year, temp, q) = line.strip().split()
  if (temp != "9999" and re.match("[01459]", q)):
    print "%s\t%s" % (year, temp)

To use the script, you need to ship it to the cluster. This is achieved via a DEFINE clause,
which also creates an alias for the STREAM command. The STREAM statement can then
refer to the alias, as the following Pig script shows:

-- max_temp_filter_stream.pig
DEFINE is_good_quality `is_good_quality.py`
  SHIP ('ch16-pig/src/main/python/is_good_quality.py');
records = LOAD 'input/ncdc/micro-tab/sample.txt'
  AS (year:chararray, temperature:int, quality:int);
filtered_records = STREAM records THROUGH is_good_quality
  AS (year:chararray, temperature:int);
grouped_records = GROUP filtered_records BY year;
max_temp = FOREACH grouped_records GENERATE group,
  MAX(filtered_records.temperature);
DUMP max_temp;

Grouping and Joining Data
Joining datasets in MapReduce takes some work on the part of the programmer (see
“Joins” on page 268), whereas Pig has very good built-in support for join operations,
making it much more approachable. Since the large datasets that are suitable for analysis
by Pig (and MapReduce in general) are not normalized, however, joins are used more
infrequently in Pig than they are in SQL.

JOIN

Let’s look at an example of an inner join. Consider the relations A and B:
grunt> DUMP A;
(2,Tie)
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9. There are more keywords that may be used in the USING clause, including 'skewed' (for large datasets with
a skewed keyspace), 'merge' (to effect a merge join for inputs that are already sorted on the join key), and
'merge-sparse' (where 1% or less of data is matched). See Pig’s documentation for details on how to use
these specialized joins.

(4,Coat)
(3,Hat)
(1,Scarf)
grunt> DUMP B;
(Joe,2)
(Hank,4)
(Ali,0)
(Eve,3)
(Hank,2)

We can join the two relations on the numerical (identity) field in each:
grunt> C = JOIN A BY $0, B BY $1;
grunt> DUMP C;
(2,Tie,Hank,2)
(2,Tie,Joe,2)
(3,Hat,Eve,3)
(4,Coat,Hank,4)

This is a classic inner join, where each match between the two relations corresponds to
a row in the result. (It’s actually an equijoin because the join predicate is equality.) The
result’s fields are made up of all the fields of all the input relations.

You should use the general join operator when all the relations being joined are too large
to fit in memory. If one of the relations is small enough to fit in memory, you can use a
special type of join called a fragment replicate join, which is implemented by distributing
the small input to all the mappers and performing a map-side join using an in-memory
lookup table against the (fragmented) larger relation. There is a special syntax for telling
Pig to use a fragment replicate join:9

grunt> C = JOIN A BY $0, B BY $1 USING 'replicated';

The first relation must be the large one, followed by one or more small ones (all of which
must fit in memory).

Pig also supports outer joins using a syntax that is similar to SQL’s (this is covered for
Hive in “Outer joins” on page 506). For example:

grunt> C = JOIN A BY $0 LEFT OUTER, B BY $1;
grunt> DUMP C;
(1,Scarf,,)
(2,Tie,Hank,2)
(2,Tie,Joe,2)
(3,Hat,Eve,3)
(4,Coat,Hank,4)
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COGROUP

JOIN always gives a flat structure: a set of tuples. The COGROUP statement is similar to
JOIN, but instead creates a nested set of output tuples. This can be useful if you want to
exploit the structure in subsequent statements:

grunt> D = COGROUP A BY $0, B BY $1;
grunt> DUMP D;
(0,{},{(Ali,0)})
(1,{(1,Scarf)},{})
(2,{(2,Tie)},{(Hank,2),(Joe,2)})
(3,{(3,Hat)},{(Eve,3)})
(4,{(4,Coat)},{(Hank,4)})

COGROUP generates a tuple for each unique grouping key. The first field of each tuple is
the key, and the remaining fields are bags of tuples from the relations with a matching
key. The first bag contains the matching tuples from relation A with the same key. Sim‐
ilarly, the second bag contains the matching tuples from relation B with the same key.

If for a particular key a relation has no matching key, the bag for that relation is empty.
For example, since no one has bought a scarf (with ID 1), the second bag in the tuple
for that row is empty. This is an example of an outer join, which is the default type for
COGROUP. It can be made explicit using the OUTER keyword, making this COGROUP state‐
ment the same as the previous one:

D = COGROUP A BY $0 OUTER, B BY $1 OUTER;

You can suppress rows with empty bags by using the INNER keyword, which gives the
COGROUP inner join semantics. The INNER keyword is applied per relation, so the fol‐
lowing suppresses rows only when relation A has no match (dropping the unknown
product 0 here):

grunt> E = COGROUP A BY $0 INNER, B BY $1;
grunt> DUMP E;
(1,{(1,Scarf)},{})
(2,{(2,Tie)},{(Hank,2),(Joe,2)})
(3,{(3,Hat)},{(Eve,3)})
(4,{(4,Coat)},{(Hank,4)})

We can flatten this structure to discover who bought each of the items in relation A:
grunt> F = FOREACH E GENERATE FLATTEN(A), B.$0;
grunt> DUMP F;
(1,Scarf,{})
(2,Tie,{(Hank),(Joe)})
(3,Hat,{(Eve)})
(4,Coat,{(Hank)})

Using a combination of COGROUP, INNER, and FLATTEN (which removes nesting) it’s pos‐
sible to simulate an (inner) JOIN:
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grunt> G = COGROUP A BY $0 INNER, B BY $1 INNER;
grunt> H = FOREACH G GENERATE FLATTEN($1), FLATTEN($2);
grunt> DUMP H;
(2,Tie,Hank,2)
(2,Tie,Joe,2)
(3,Hat,Eve,3)
(4,Coat,Hank,4)

This gives the same result as JOIN A BY $0, B BY $1.

If the join key is composed of several fields, you can specify them all in the BY clauses
of the JOIN or COGROUP statement. Make sure that the number of fields in each BY clause
is the same.

Here’s another example of a join in Pig, in a script for calculating the maximum tem‐
perature for every station over a time period controlled by the input:

-- max_temp_station_name.pig
REGISTER pig-examples.jar;
DEFINE isGood com.hadoopbook.pig.IsGoodQuality();

stations = LOAD 'input/ncdc/metadata/stations-fixed-width.txt'
  USING com.hadoopbook.pig.CutLoadFunc('1-6,8-12,14-42')
  AS (usaf:chararray, wban:chararray, name:chararray);
  
trimmed_stations = FOREACH stations GENERATE usaf, wban, TRIM(name);    

records = LOAD 'input/ncdc/all/191*'
  USING com.hadoopbook.pig.CutLoadFunc('5-10,11-15,88-92,93-93')
  AS (usaf:chararray, wban:chararray, temperature:int, quality:int);
  
filtered_records = FILTER records BY temperature != 9999 AND isGood(quality);
grouped_records = GROUP filtered_records BY (usaf, wban) PARALLEL 30;
max_temp = FOREACH grouped_records GENERATE FLATTEN(group),
  MAX(filtered_records.temperature);
max_temp_named = JOIN max_temp BY (usaf, wban), trimmed_stations BY (usaf, wban)
  PARALLEL 30;
max_temp_result = FOREACH max_temp_named GENERATE $0, $1, $5, $2;

STORE max_temp_result INTO 'max_temp_by_station';

We use the cut UDF we developed earlier to load one relation holding the station IDs
(USAF and WBAN identifiers) and names, and one relation holding all the weather
records, keyed by station ID. We group the filtered weather records by station ID and
aggregate by maximum temperature before joining with the stations. Finally, we project
out the fields we want in the final result: USAF, WBAN, station name, and maximum
temperature.

Here are a few results for the 1910s:

462 | Chapter 16: Pig



228020        99999        SORTAVALA      322
029110        99999        VAASA AIRPORT  300
040650        99999        GRIMSEY        378

This query could be made more efficient by using a fragment replicate join, as the station
metadata is small.

CROSS

Pig Latin includes the cross-product operator (also known as the Cartesian product),
CROSS, which joins every tuple in a relation with every tuple in a second relation (and
with every tuple in further relations, if supplied). The size of the output is the product
of the size of the inputs, potentially making the output very large:

grunt> I = CROSS A, B;
grunt> DUMP I;
(2,Tie,Joe,2)
(2,Tie,Hank,4)
(2,Tie,Ali,0)
(2,Tie,Eve,3)
(2,Tie,Hank,2)
(4,Coat,Joe,2)
(4,Coat,Hank,4)
(4,Coat,Ali,0)
(4,Coat,Eve,3)
(4,Coat,Hank,2)
(3,Hat,Joe,2)
(3,Hat,Hank,4)
(3,Hat,Ali,0)
(3,Hat,Eve,3)
(3,Hat,Hank,2)
(1,Scarf,Joe,2)
(1,Scarf,Hank,4)
(1,Scarf,Ali,0)
(1,Scarf,Eve,3)
(1,Scarf,Hank,2)

When dealing with large datasets, you should try to avoid operations that generate
intermediate representations that are quadratic (or worse) in size. Computing the cross
product of the whole input dataset is rarely needed, if ever.

For example, at first blush, one might expect that calculating pairwise document simi‐
larity in a corpus of documents would require every document pair to be generated
before calculating their similarity. However, if we start with the insight that most
document pairs have a similarity score of zero (i.e., they are unrelated), then we can find
a way to a better algorithm.

In this case, the key idea is to focus on the entities that we are using to calculate similarity
(terms in a document, for example) and make them the center of the algorithm. In
practice, we also remove terms that don’t help discriminate between documents (stop‐
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words), and this reduces the problem space still further. Using this technique to analyze
a set of roughly one million (106) documents generates on the order of one billion (109)
intermediate pairs,10 rather than the one trillion (1012) produced by the naive approach
(generating the cross product of the input) or the approach with no stopword removal.

GROUP

Where COGROUP groups the data in two or more relations, the GROUP statement groups
the data in a single relation. GROUP supports grouping by more than equality of keys:
you can use an expression or user-defined function as the group key. For example,
consider the following relation A:

grunt> DUMP A;
(Joe,cherry)
(Ali,apple)
(Joe,banana)
(Eve,apple)

Let’s group by the number of characters in the second field:
grunt> B = GROUP A BY SIZE($1);
grunt> DUMP B;
(5,{(Eve,apple),(Ali,apple)})
(6,{(Joe,banana),(Joe,cherry)})

GROUP creates a relation whose first field is the grouping field, which is given the alias
group. The second field is a bag containing the grouped fields with the same schema as
the original relation (in this case, A).

There are also two special grouping operations: ALL and ANY. ALL groups all the tuples
in a relation in a single group, as if the GROUP function were a constant:

grunt> C = GROUP A ALL;
grunt> DUMP C;
(all,{(Eve,apple),(Joe,banana),(Ali,apple),(Joe,cherry)})

Note that there is no BY in this form of the GROUP statement. The ALL grouping is com‐
monly used to count the number of tuples in a relation, as shown in “Validation and
nulls” on page 442.

The ANY keyword is used to group the tuples in a relation randomly, which can be useful
for sampling.

464 | Chapter 16: Pig

http://bit.ly/doc_similarity
http://bit.ly/doc_similarity


Sorting Data
Relations are unordered in Pig. Consider a relation A:

grunt> DUMP A;
(2,3)
(1,2)
(2,4)

There is no guarantee which order the rows will be processed in. In particular, when
retrieving the contents of A using DUMP or STORE, the rows may be written in any order.
If you want to impose an order on the output, you can use the ORDER operator to sort a
relation by one or more fields. The default sort order compares fields of the same type
using the natural ordering, and different types are given an arbitrary, but deterministic,
ordering (a tuple is always “less than” a bag, for example).

The following example sorts A by the first field in ascending order and by the second
field in descending order:

grunt> B = ORDER A BY $0, $1 DESC;
grunt> DUMP B;
(1,2)
(2,4)
(2,3)

Any further processing on a sorted relation is not guaranteed to retain its order. For
example:

grunt> C = FOREACH B GENERATE *;

Even though relation C has the same contents as relation B, its tuples may be emitted in
any order by a DUMP or a STORE. It is for this reason that it is usual to perform the ORDER
operation just before retrieving the output.

The LIMIT statement is useful for limiting the number of results as a quick-and-dirty
way to get a sample of a relation. (Although random sampling using the SAMPLE operator,
or prototyping with the ILLUSTRATE command, should be preferred for generating more
representative samples of the data.) It can be used immediately after the ORDER statement
to retrieve the first n tuples. Usually, LIMIT will select any n tuples from a relation, but
when used immediately after an ORDER statement, the order is retained (in an exception
to the rule that processing a relation does not retain its order):

grunt> D = LIMIT B 2;
grunt> DUMP D;
(1,2)
(2,4)

If the limit is greater than the number of tuples in the relation, all tuples are returned
(so LIMIT has no effect).
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Using LIMIT can improve the performance of a query because Pig tries to apply the limit
as early as possible in the processing pipeline, to minimize the amount of data that needs
to be processed. For this reason, you should always use LIMIT if you are not interested
in the entire output.

Combining and Splitting Data
Sometimes you have several relations that you would like to combine into one. For this,
the UNION statement is used. For example:

grunt> DUMP A;
(2,3)
(1,2)
(2,4)
grunt> DUMP B;
(z,x,8)
(w,y,1)
grunt> C = UNION A, B;
grunt> DUMP C;
(2,3)
(z,x,8)
(1,2)
(w,y,1)
(2,4)

C is the union of relations A and B, and because relations are unordered, the order of the
tuples in C is undefined. Also, it’s possible to form the union of two relations with dif‐
ferent schemas or with different numbers of fields, as we have done here. Pig attempts
to merge the schemas from the relations that UNION is operating on. In this case, they
are incompatible, so C has no schema:

grunt> DESCRIBE A;
A: {f0: int,f1: int}
grunt> DESCRIBE B;
B: {f0: chararray,f1: chararray,f2: int}
grunt> DESCRIBE C;
Schema for C unknown.

If the output relation has no schema, your script needs to be able to handle tuples that
vary in the number of fields and/or types.

The SPLIT operator is the opposite of UNION: it partitions a relation into two or more
relations. See “Validation and nulls” on page 442 for an example of how to use it.

Pig in Practice
There are some practical techniques that are worth knowing about when you are
developing and running Pig programs. This section covers some of them.
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Parallelism
When running in MapReduce mode, it’s important that the degree of parallelism match‐
es the size of the dataset. By default, Pig sets the number of reducers by looking at the
size of the input and using one reducer per 1 GB of input, up to a maximum of 999
reducers. You can override these parameters by setting pig.exec.reducers

.bytes.per.reducer (the default is 1,000,000,000 bytes) and pig.exec.reducers

.max (the default is 999).

To explicitly set the number of reducers you want for each job, you can use a PARAL
LEL clause for operators that run in the reduce phase. These include all the grouping
and joining operators (GROUP, COGROUP, JOIN, CROSS), as well as DISTINCT and ORDER.
The following line sets the number of reducers to 30 for the GROUP:

grouped_records = GROUP records BY year PARALLEL 30;

Alternatively, you can set the default_parallel option, and it will take effect for all
subsequent jobs:

grunt> set default_parallel 30

See “Choosing the Number of Reducers” on page 217 for further discussion.

The number of map tasks is set by the size of the input (with one map per HDFS block)
and is not affected by the PARALLEL clause.

Anonymous Relations
You usually apply a diagnostic operator like DUMP or DESCRIBE to the most recently
defined relation. Since this is so common, Pig has a shortcut to refer to the previous
relation: @. Similarly, it can be tiresome to have to come up with a name for each relation
when using the interpreter. Pig allows you to use the special syntax => to create a relation
with no alias, which can only be referred to with @. For example:

grunt> => LOAD 'input/ncdc/micro-tab/sample.txt';
grunt> DUMP @
(1950,0,1)
(1950,22,1)
(1950,-11,1)
(1949,111,1)
(1949,78,1)

Parameter Substitution
If you have a Pig script that you run on a regular basis, it’s quite common to want to be
able to run the same script with different parameters. For example, a script that runs
daily may use the date to determine which input files it runs over. Pig supports parameter
substitution, where parameters in the script are substituted with values supplied at run‐
time. Parameters are denoted by identifiers prefixed with a $ character; for example,
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$input and $output are used in the following script to specify the input and output
paths:

-- max_temp_param.pig
records = LOAD '$input' AS (year:chararray, temperature:int, quality:int);
filtered_records = FILTER records BY temperature != 9999 AND
  quality IN (0, 1, 4, 5, 9);
grouped_records = GROUP filtered_records BY year;
max_temp = FOREACH grouped_records GENERATE group,
  MAX(filtered_records.temperature);
STORE max_temp into '$output';

Parameters can be specified when launching Pig using the -param option, once for each
parameter:

% pig -param input=/user/tom/input/ncdc/micro-tab/sample.txt \
>     -param output=/tmp/out \
>     ch16-pig/src/main/pig/max_temp_param.pig

You can also put parameters in a file and pass them to Pig using the -param_file option.
For example, we can achieve the same result as the previous command by placing the
parameter definitions in a file:

# Input file
input=/user/tom/input/ncdc/micro-tab/sample.txt
# Output file
output=/tmp/out

The pig invocation then becomes:
% pig -param_file ch16-pig/src/main/pig/max_temp_param.param \
>     ch16-pig/src/main/pig/max_temp_param.pig

You can specify multiple parameter files by using -param_file repeatedly. You can also
use a combination of -param and -param_file options; if any parameter is defined both
in a parameter file and on the command line, the last value on the command line takes
precedence.

Dynamic parameters

For parameters that are supplied using the -param option, it is easy to make the value
dynamic by running a command or script. Many Unix shells support command sub‐
stitution for a command enclosed in backticks, and we can use this to make the output
directory date-based:

% pig -param input=/user/tom/input/ncdc/micro-tab/sample.txt \
>     -param output=/tmp/`date "+%Y-%m-%d"`/out \
>     ch16-pig/src/main/pig/max_temp_param.pig

Pig also supports backticks in parameter files by executing the enclosed command in a
shell and using the shell output as the substituted value. If the command or script exits
with a nonzero exit status, then the error message is reported and execution halts.
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Backtick support in parameter files is a useful feature; it means that parameters can be
defined in the same way in a file or on the command line.

Parameter substitution processing

Parameter substitution occurs as a preprocessing step before the script is run. You can
see the substitutions that the preprocessor made by executing Pig with the -dryrun
option. In dry run mode, Pig performs parameter substitution (and macro expansion)
and generates a copy of the original script with substituted values, but does not execute
the script. You can inspect the generated script and check that the substitutions look
sane (because they are dynamically generated, for example) before running it in normal
mode.

Further Reading
This chapter provided a basic introduction to using Pig. For a more detailed guide, see
Programming Pig by Alan Gates (O’Reilly, 2011).
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