
Dr. R. Madana Mohana
Professor, Artificial Intelligence & Data Science | I/c-Head, Artificial Intelligence & Machine Learning

CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY
Hyderabad - 500 075, Telangana, INDIA

www.cbit.ac.in

Unit - V
Object Code Generation| Error Recovery

Object Code Generation

• Object code forms

• Machine dependent code optimization

• Register allocation and assignment

• Generic code generation algorithms

Error Recovery

• Various errors in phases and recovery of errors in compilation

• Introduction to tools of compiler

1

THEORY OF COMPUTATION AND COMPILERS

2

CODE GENERATOR

Issues in the design of a Code Generator

Outline

Introduction to Code Generator

• Position of Code Generator

• Requirements

Issues in the design of a Code Generator

• Input to the Code Generator

• Target Programs (Object Code Forms)

• Memory Management

• Instruction Selection

• Register Allocation

• Choice of Evaluation Order

The Target Machine / Language

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

3

Introduction to Code Generator

• Position of Code Generator

• Requirements

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

4

Introduction to Code Generator

• Code Generator is the 6th (final) phase of

compiler.

• Input of the Code Generator is the optimized

Intermediate Code.

• Output of the Code Generator is the target code in

Assembly Language.

• Using Assembler, Assembly Language code is

converted into Machine Language code.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

5

Code Generator

• Position of Code Generator:

Front-End Code Optimizer Code Generator
Target

code
Source

code

Intermediate

Code

Optimized

Intermediate

Code

Symbol Table

Figure: Position of Code Generator

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

6

Code Generator Requirements

• Output code must be correct:

• The meaning of the source and the target program must remain

the same i.e., given an input, we should get same output both

from the target and from the source program.

• We have no definite way to ensure this condition.

• What all we can do is to maintain a test suite and check.

• Output code must be of high quality:

• The target code should make effective use of the resources of the

target machine.

• Code Generator should run efficiently:

• It is also of no use if code generator itself takes hours or minutes

to convert a small piece of code.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

7

CODE GENERATOR

Issues in the design of a Code Generator

Outline

Introduction to Code Generator

• Position of Code Generator

• Requirements

Issues in the design of a Code Generator

• Input to the Code Generator

• Target Programs (Object Code Forms)

• Memory Management

• Instruction Selection

• Register Allocation

• Choice of Evaluation Order

The Target Machine / Language

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

8

Input to the Code Generator

• Intermediate Representation (IR) with

Symbol Table.

─ Assume that input has been validated by the front-end.

• There are several choices for the Intermediate

Language, including:

─ Liner Representations such as Postfix Notation

─ Three-Address representations such as Quadruples

─ Virtual Machine representations such as Stack-Machine

Code

─ Graphical representations such as Syntax Trees and DAGs

(Directed Acyclic Graph)

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

9

Target Programs (Object Code Forms)

• The output of the Code Generator is the

Target Program.

• Like the Intermediate Code, this output may take

on a variety of forms:

1. Absolute Machine Language: Fast for small

programs

2. Relocatable Machine Language: Requires Linker and

Loader.

3. Assembly Language: Requires Assembler, Linker

and Loader.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

10

Target Programs (Object Code Forms)

─ Absolute Machine Language: Fast for small

programs

 Producing an absolute machine language as output has the

advantage that it can be placed in a fixed location in memory

and immediately executed.

 A small program can be thus compiled and executed quickly.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

11

Target Programs (Object Code Forms)

─ Relocatable Machine Language: Requires Linker and

Loader.

 Producing a relocatable machine code as output allows

subprograms to be compiled separately.

 Although we must pay the added expense of linking and

loading if we produce relocatable object modules, we gain a

great deal of flexibility in being able to compile subroutines

separately and to call other previously compiled programs

from an object module.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

12

Target Programs (Object Code Forms)

─ Assembly Language: Requires Assembler, Linker and

Loader.

 Producing an assembly code as output makes the process of

code generation easier as we can generate symbolic

instructions.

 The price paid is the assembling, linking and loading steps

after code generation.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

13

Memory Management

• Mapping names in the source program to addresses of

data objects in run-time memory is done cooperatively by

the Front-end and the Code Generator.

• If Machine code is being generated, labels in three-

address statements have to be converted to address of

instructions.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

14

Instruction Selection

• Choosing appropriate target-machine instructions to

implement the IR (Intermediate Representation)

statements.

• Import Factors are:

 Uniformity

 Completeness

 Instruction speed

 Power consumption

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

15

Instruction Selection
• Choosing appropriate target-machine instructions to

implement the IR (Intermediate Representation)

statements.

• Import Factors are:

 Uniformity: i.e. support for different object/data types,

what op-codes are applicable on what data types etc.

 Completeness: Not all source programs can be

converted/translated in to machine code for all

architectures/machines. E.g., 80x86 doesn't support

multiplication.

 Instruction speed: This is needed for better

performance.

 Power consumption
Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

16

Instruction Selection
• The Complexity of mapping IR program in to code-

sequence for target machine depends on:

• Level of IR (high - level or low level)

• Nature of Instruction set (data type support)

• Desired quality of generated code (Speed

and size)

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

17

Instruction Selection
• Ex: The sequence of statements

a := b + c

d := a + e

would be translated into

1. MOV b, R0

2. ADD c, R0

3. MOV R0, a

4. MOV a, R0

5. ADD e, R0

6. MOV R0, d

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

18

Instruction Selection
• Ex: The sequence of statements

1. MOV b, R0

2. ADD c, R0

3. MOV R0, a

4. MOV a, R0

5. ADD e, R0

6. MOV R0, d

• Here the fourth statement MOV a, Ro is redundant, and so is

the third if ‘a’ is not subsequently used.

• This statement (4) can be eliminated by introducing an
“increment instruction (INC)”, then the three-address

statement a:= a + 1 may be implemented more efficiently

by the single instruction INC a rather than MOV a, Ro.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

19

Instruction Selection
• Ex: The sequence of statements

∴ a := a + 1 would be translated into

MOV a, R0 INC a

ADD #1, R0

MOV R0, a

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

20

Register Allocation
• Register allocation and Assignment

 Deciding what values to keep in which registers.

• Register Allocation:

 Selecting the set of variables that will reside in registers at each

point in the program.

• Register Assignment:

 Picking the specific register that a variable reside in.

• Efficient utilization of registers in

generating good code:

 Instructions with register operands are faster

 Store long life time and counters in registers

 Temporary Locations

 Even odd register pairs.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

21

Register Allocation
Ex:

Two three-address code sequences

(a)

t := a + b

t := t * c

t := t / d

(b)

t := a + b

t := t + c

t := t / d

The shortest assembly–code sequences for (a) and (b)

are given below:

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

22

Register Allocation
Ex:

(a)

t := a + b

t := t * c

t := t / d

The shortest assembly–code sequence for (a) is given

below: Ri stands Register i

L R1, a // L-Load

A R1, b // A-Add

M R0, c // M- Move

D R0, d // D- Division

ST R1, t // ST- Store

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

23

Register Allocation
Ex:

(b)

t := a + b

t := t + c

t := t / d

The shortest assembly–code sequence for (b) is given below:

Ri stands Register i

L R0, a // L-Load

A R0, b // A-Add

A R0, c // A-Add

SRDA R0, 32 // Shifts the dividend into R1 and clears R0, so all bits equal its sign bit.

D R0, d // D- Division

ST R1, t // ST- Store

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

24

Choice of Evaluation Order

• The order in which the instructions will be executed.

• This increases performance of the code.

• Selecting the order in which computations are performed

• Affects the efficiency of the target code

• Picking a best order is NP- complete

• Some orders require fewer registers than others

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

25

CODE GENERATOR

Issues in the design of a Code Generator

Outline

Introduction to Code Generator

• Position of Code Generator

• Requirements

Issues in the design of a Code Generator

• Input to the Code Generator

• Target Programs (Object Code Forms)

• Memory Management

• Instruction Selection

• Register Allocation

• Choice of Evaluation Order

The Target Machine / Language

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

26

The Target Machine / Language

• The Target Machine and its instruction set is a

Prerequisite for designing a good code generator.

• Use as the target computer a register machine that is

representative of several minicomputers.

• The target computer is byte-addressable machine with

four bytes to a word and n general-purpose registers

R0, R1, --, Rn-1.

• It has two address instructions of the form:

OP Source, destination

where OP is an Op-Code (operation code)

Source and destination are data fields.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

27

The Target Machine / Language

• It has the following OP-Codes(among others):

MOV - Move Source to Destination

ADD - add Source to Destination

SUB - Subtract Source form Destination

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

28

The Target Machine / Language

Addresses in the Target Code or Addressing Modes:

• The address modes together with their assembly-

Language forms and associated costs as follows:

MODE FORM ADDRESS ADDED COST

Absolute M M 1

Register R R 0

Indexed c (R) c + Contents (R) 1

Indirect Register *R Contents (R) 0

Indirect Indexed *c(R) Contents (c + Contents (R)) 1

contents(R) – denotes the contents of the register or memory address represented by R

A Memory location M or a register R represents itself when used as a source or destination.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

29

The Target Machine / Language

Addresses in the Target Code or Addressing Modes:

For example, the instruction

Mov R0, M

Stores the contents of register R0 into memory location M.

• An address offset c from the value in register R is written

as c(R). Thus,

Mov 4(R0), M

Stores the value contents (4 + contents(R0)) into

memory location M

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

30

The Target Machine / Language

Addresses in the Target Code or Addressing Modes:

• Indirect versions of the register and indexed modes are

defined by prefix *, Thus,

Mov *4(R0), M

Stores the value contents(contents(4+contents(R0)))into

memory location M

• A final address mode allows the source to be a constant:

Thus, the instruction MOV #1, R0 Loads the constant 1

into register R0

MODE FORM CONSTANT ADDED COST

Literal #c c 1

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

31

The Target Machine / Language

Instruction Costs:

• Cost of an instruction = 1 + Cost of

operands (added cost in the table for addressing modes

above discussed)

• Cost of register operand = 0

• Cost involving memory and constants = 1

• Cost of a program = sum of instruction

costs

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

32

The Target Machine / Language

Instruction Costs: Examples

• The instruction MOV R0, R1 copies the contents of

register R0 into register R1. This instruction has cost one,

since it occupies only one word of memory.

• The (Store) instruction MOV R5,M copies the contents

of register R5 into memory location M. This instruction

has cost two, since the address of memory location M is

in the word following the instruction.

• The instruction ADD #1, R3 adds the constant 1 to the

contents of register R3, and has cost two, since the

constant 1 must appear in the next word following the

instruction.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

33

The Target Machine / Language

Instruction Costs: Examples

• The instruction SUB 4(R0), *12(R1) stores the

value
contents(contents(12+contents(R1)))-

contents(contents(4+R0)) into the destination

*12(R1).

The cost of this instruction is three, since the constants

4 and 12 are stored in the next two words following the

instruction.

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

34

The Target Machine / Language

Code Generation: Examples of code to generate for a three

address statement of the form a := b + c where b and c

are simple variable in distinct memory locations denoted by

these statements.

Examples: Type1

Three-address statement Assembly Code Added Cost

a := b + c

MOV b, R0 1

ADD c, R0 2

MOV R0, a 2

Total Cost 6

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

35

The Target Machine / Language

Code Generation: Examples of code to generate for a three

address statement of the form a := b + c where b and c

are simple variable in distinct memory locations denoted by

these statements.

Examples: Type2

Three-address statement Assembly Code Added Cost

a := b + c
MOV b, a 3

ADD c, a 3

Total Cost 6

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

36

The Target Machine / Language

Code Generation: Examples of code to generate for a three

address statement of the form a := b + c where b and c

are simple variable in distinct memory locations denoted by

these statements.

Examples: Type3

Assuming R0, R1 and R2 contain the address of a, b and c

respectively, we can use:

Three-address statement Assembly Code Added Cost

a := b + c
MOV *R1, *R0 1

ADD *R2, *R0 1

Total Cost 2

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

37

The Target Machine / Language

Code Generation: Examples of code to generate for a three

address statement of the form a := b + c where b and c

are simple variable in distinct memory locations denoted by

these statements.

Examples: Type4

Assuming R1 and R2 contain the values of b and c

respectively, and that the value of b is not needed after the

assignment we can use:

Three-address statement Assembly Code Added Cost

a := b + c
ADD R2, R1 1

MOV R1, a 2

Total Cost 3

Prof R. Madana Mohana | Object Code Generation| Error Recovery | Lecture-1

