
Dr. R. Madana Mohana
Professor, Artificial Intelligence & Data Science | I/c-Head, Artificial Intelligence & Machine Learning

CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY
Hyderabad - 500 075, Telangana, INDIA

www.cbit.ac.in

Unit - IV

Code Optimization | Data Flow Analysis

Code Optimization
• Consideration for Optimization
• Scope of Optimization
• *Basic blocks and Local Optimization
• Loop Optimization
• Frequency Reduction
• Folding
• DAG Representation

Data Flow Analysis
• Flow Graph
• Data Flow Equation
• Global Optimization
• Redundant Sub Expression Elimination
• Induction Variable Elements
• Live Variable Analysis
• Copy Propagation

1

THEORY OF COMPUTATION AND COMPILERS

2

 By Scope:

• Local Optimization: within a single basic block.

• Peephole Optimization : on a window of instructions (usually

local)

• Loop-level Optimization : on one or more loopsor loop nests.

• Global: for an entire procedure

• Interprocedural: across multiple procedures or whole program.

 By machine information used:

• Machine-independent versus machine-dependent.

 By effect on programstructure:

• Algebraic transformations (e.g., x+0, x*1, 3*z*4, …)

• Reordering transformations (change the order of 2 computations)

 Loop transformations: loop-level reordering transformations.

Code Optimization Classification

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

3

Loop Optimization:

 Optimizations has to be done within loops especially within

inner loops.

 The running time of a program may be improved, if we

decrease the number of instructions in an inner loop, even

if we increase the amount of code outside that loop.

Machine - Independent Optimizations

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

4

Loop Optimization:

 There are five techniques for loop optimizations. These

are:

1. Code motion or frequency reduction

2. Induction variable elimination

3. Reduction in strength

4. Loop unrolling

5. Loop jamming

Machine - Independent Optimizations

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

5

A Running Example (Quicksort)

Loop Optimization

Fig: C code for quicksort

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

6

A Running Example (Quicksort)

Loop Optimization

Fig: Three- addresscode for aboveC fragment

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

7

A Running Example (Quicksort)

Loop Optimization

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

8

Loop Optimization

1. Code Motion or Frequency Reduction

 An important modification that decreases the amount of

code in a loop

 Loop-invariant computation
• An expression that yields the same result independent

of the number of times a loop is executed

 Code Motion takes loop-invariant computation before its

loop

while (i <= limit-2)

t = limit -2 while

(i <= t)
Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

9

2. Induction Variables and Reduction in Strength

 Induction variable

• For an induction variable x, there is a positive or negative

constant c such that each time x is assigned, its value

increases by c

 Induction variables can be computed with a single

increment (addition or subtraction) per loop iteration

 Strength reduction

• The transformation of replacing an expensive operation,

such as multiplication, by a cheaper one, such as

addition

 Induction variables lead to

• strength reduction

• eliminate computation

Loop Optimization

3. Strength Reduction

 Replace expensive operations with simpler ones

 Example: Multiplications replaced by additions

y := x * 2 y := x + x

10

Peephole optimizations are often strength reductions

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

Loop Optimization

11

Inside-out

Strength Reduction

Loop Optimization

12

Strength Reduction

Loop Optimization

13

Loop Optimization

4. Loop Unrolling

 Loop unrolling involves replicating the body of the loop to

reduce the number of tests required to be carried out if

the number of iterations are constant.

 Ex:
i = 1

while (i <=100)

{

x[i] =0;

i++

}

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

14

Loop Optimization

4. Loop Unrolling

Ex:
i = 1

while (i <=100)

{

x[i] =0;

i++

}

In this case the test i <=100 will be performed 100 times,

but if the body of the loop is replicated, then the number of
times this test need to be performed will be 50

(i.e., 100/2 = 50).

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

15

Loop Optimization

4. Loop Unrolling

Ex:

The loop after replication of body will be:
i = 1

while (i <=50)

{

x[i] =0;

i++

x[i] =0;

i++

}

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

16

Loop Optimization

5. Loop Jamming

 This is the technique of merging the bodies of the two

loops, if the two loops have the same number of iterations

and then uses the same indices.

 This eliminates the test of one loop.

Ex:

{

for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)

x[i, j] = 0;

for (i = 0; i < 10; i++)

x[i, j] = 1;

}

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

17

Loop Optimization

5. Loop Jamming

Ex:

{

for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)

x[i, j] = 0;

for (i = 0; i < 10; i++)

x[i, j] = 1;

}

Here the bodies of the loops on i can be concatenated. The

result of loop jamming will be:

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

18

Loop Optimization

5. Loop Jamming

Ex:

Here the bodies of the loops on i can be concatenated. The

result of loop jamming will be:

{

for (i = 0; i < 10; i++)

{

for (j = 0; j < 10; j++)

x[i, j] = 0;

x[i, j] = 1;

}

}

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

19

Folding

Folding

 Constant folding is one of the common example of

function-preserving (or semantic-preserving)

transformation.

 Deducing at compile time that the value of an expression

is a constant and using the constant instead

 Constant folding is the process of recognizing and

evaluating constant expressions at compile time rather

than computing them at runtime.

 Terms in constant expressions are typically simple

literals, such as the integer literal, but they may also be

variables whose values are known at compile time.

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

20

Folding

Folding

Ex-1:

Before optimization:

tmp=5*3+8-12/2

After optimization:

tmp=17

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

21

Folding

Folding

Ex-2:

In the code fragment below, the expression (6 + 4) can be

evaluated at compile time and replaced with the constant
10.

int f (void)

{

return 6 + 4;

}

Below is the code fragment after constant folding:
int f (void)

{

return 10;

}

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

22

Folding

When is Constant Folding Applied in Compiler Design

Constant Folding is applied:

 During the Intermediate Code Generation phase of the

compiler, which generates an intermediate representation

of source code.

 After other optimizations that generate constant

expressions, which can be eliminated by constant folding.

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

23

Folding

Advantages of Constant Folding

 Constant Folding is used to decrease the execution time.

 Constant Folding optimizes the code.

 Constant Folding also reduces Lines of Code.

 Constant Folding helps to avoid redundant computations

in the code, hence making it more efficient.

 Constant Folding also reduces power consumption.

 Constant Folding also helps in efficient memory

management.

 Constant Folding makes hardware usage more efficient.

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

24

Folding

Constant Propagation in Compiler Design

 Constant propagation is a local optimization technique

that substitutes the values of variables and expressions

whose values are known beforehand.

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

25

Folding

Constant Propagation

 Constant propagation is the process of substituting the

values of known constants in expressions at compile

time.

 Such constants also include intrinsic functions applied to

constant values.

Ex: Consider the following pseudocode:

int x = 14;

int y = 7 - x / 2;

return y * (28 / x + 2);

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

26

Folding

Constant Propagation

Ex: Consider the following pseudocode:

int x = 14;

int y = 7 - x / 2;

return y * (28 / x + 2);

Propagating x yields:

int x = 14;

int y = 7 - 14 / 2;

return y * (28 / 14 + 2);

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

27

Folding

Constant Propagation

Ex:

Propagating x yields:

int x = 14;

int y = 7 - 14 / 2;

return y * (28 / 14 + 2);

Continuing to propagate yields the following (which would

likely be further optimized by dead-code elimination of both
x and y:

int x = 14;

int y = 0;

return 0;

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

28

Folding

Constant Propagation

 Constant propagation is implemented in compilers using

reaching definition analysis results.

 If all variable's reaching definitions are the same

assignment which assigns a same constant to the variable,

then the variable has a constant value and can be

replaced with the constant.

 Constant propagation can also cause conditional branches

to simplify to one or more unconditional statements, when

the conditional expression can be evaluated to true or

false at compile time to determine the only possible

outcome.

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

29

Folding

Difference between Constant Propagation and Constant

Folding

Or

Are constant folding and constant propagation the same?

• No, constant folding and constant propagation are not the

same, but they are related compiler optimization techniques.

• Constant propagation replaces the bound variable with a

constant expression it is bound to.

• On the other hand, constant folding evaluates the expression

with all compile-time inputs.

 In Constant Propagation, the variable is substituted with its

assigned constant where as in Constant Folding, the

variables whose values can be computed at compile time are

considered and computed.

Prof R. Madana Mohana | Code Optimization | Data Flow Analysis | Lecture-4

