
Dr. R. Madana Mohana
Professor, Artificial Intelligence & Data Science | I/c-Head, Artificial Intelligence & Machine Learning

 CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY
Hyderabad - 500 075, Telangana, INDIA

www.cbit.ac.in

Unit - III
SEMANTIC ANALYSIS, INTERMEDIATE CODE GENERATOR

 & SYMBOL TABLE

SEMANTIC ANALYSIS
• Attributed Grammars
• Syntax Directed Translation

INTERMEDIATE CODE GENERATOR
• Intermediate Forms of Source Programs - Abstract Syntax Tree, Polish

Notation and Three Address Codes
• Intermediate Code Forms
• Type Checker

SYMBOL TABLE
• Symbol Table Format
• Organization for Block Structures Languages
• Hashing

1

THEORY OF COMPUTATION AND COMPILERS

2

INTERMEDIATE-CODE GENERATION

Three-Address Code

Outline:

• Addresses and Instructions

• Quadruples

• Triples

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

3

Three-Address Code
In three-address code, there is at most one operator on the right

side of an instruction; that is, no built-up arithmetic expressions

are permitted. Thus a source-language expression like x + y *

z might be translated into the sequence of three-address

instructions:

 t1 = y * z

 t2 = x + t1

where t1 and t2 are compiler-generated temporary names.

This multi-operator arithmetic expressions and of nested flow-of-

control statements makes three-address code desirable for target-

code generation and optimization.

The use of names for the intermediate values computed by a

program allows three-address code to be rearranged easily.
Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

4

Three-Address Code
Example:

Three-address code is a linearized representation of a syntax

tree or a DAG in which explicit names correspond to the interior

nodes of the graph. A DAG and its corresponding three-address

code is shown below:

+

+
*

d

a

*

-

b c

Fig: DAG for the expression a + a *(b-c)+(b-c)*d

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

5

Three-Address Code
Example:

Given expression: a + a *(b-c)+(b-c)*d

t1 = b - c

t2 = a * t1

t3 = a + t2

t4 = t1 * d

t5 = t3 + t4

Fig: Three-address code

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

6

Addresses and Instructions
• Three-address code is built from two concepts: addresses

and instructions.

• In object-oriented terms, these concepts correspond to

classes, and the various kinds of addresses and

instructions correspond to appropriate subclasses.

• Alternatively, three-address code can be implemented

using records with fields for the addresses; records called

quadruples and triples.

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

7

Addresses and Instructions
An address can be one of the following:

• A name. For convenience, we allow source-program names to

appear as addresses in three-address code. In an

implementation, a source name is replaced by a pointer to its

symbol-table entry, where all information about the name is

kept.

• A constant. In practice, a compiler must deal with many

different types of constants and variables. Type conversions

within expressions are considered.

• A compiler-generated temporary. It is useful,

especially in optimizing compilers, to create a distinct name

each time a temporary is needed. These temporaries can be

combined, if possible, when registers are allocated to variables.

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

8

Addresses and Instructions
List of the common three-address instruction

forms:

1. Assignment instructions of the form x = y op z,

where op is a binary arithmetic or logical operation, and

x, y, and z are addresses.

2. Assignments of the form x = op y, where op is a

unary operation. Essential unary operations include unary

minus, logical negation, and conversion operators that,

for example, convert an integer to a floating-point

number.

3. Copy instructions of the form x = y, where x

is assigned the value of y.

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

9

Addresses and Instructions
4. An unconditional jump goto L. The three-address

instruction with label L is the next to be executed.

5. Conditional jumps of the form if x goto L and

ifFalse x goto L. These instructions execute the

instruction with label L next if x is true and false,

respectively. Otherwise, the following(6) three-address

instruction in sequence is executed next, as usual.

6. Conditional jumps such as if x relop y goto L,

which apply a relational operator (<, ==, >=, etc.) to x

and y, and execute the instruction with label L next if x

stands in relation relop to y. If not, the three-address

instruction following if x relop y goto L is

executed next, in sequence.
Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

10

Addresses and Instructions
7. Procedure calls and returns are implemented using the following

instructions: param x for parameters; call p, n and y =

call p, n for procedure and function calls, respectively; and

return y, where y, representing a returned value, is optional.

Their typical use is as the sequence of three-address instructions
param x1
param x2
.....
param xn
call p, n

generated as part of a call of the procedure p(x1, x2,..xn). The

integer n, indicating the number of actual parameters in “call p, n,”

is not redundant because calls can be nested. That is, some of the first

param statements could be parameters of a call that comes after p

returns its value; that value becomes another parameter of the later

call.
Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

11

Addresses and Instructions
8. Indexed copy instructions of the form x = y[i] and

x[i]= y. The instruction x = y[i] sets x to the value

in the location i memory units beyond location y. The

instruction x[i]= y sets the contents of the location i

units beyond x to the value of y.

9. Address and pointer assignments of the form x = &y, x

= *y, and *x = y. The instruction x = &y sets the r-

value of x to be the location (l-value) of y. l-value

and r-value are appropriate on the left and right sides of

assignments, respectively. In the instruction x = *y, y is

a pointer or a temporary whose r-value is a location.

The r-value of x is made equal to the contents of that

location. Finally, *x = y sets the r-value of the object

pointed to by x to the r-value of y.
Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

12

Addresses and Instructions
Example:

Consider the statement
do i = i+1;

while (a[i] < v);

Two possible translations of this statement are shown below:

Fig: Two ways of assigning labels to three-

address statements

(a) Symbolic labels

L: t1 = i + 1

 i = t1
 t2 = i * 8
 t3 = a [t2]
 if t3 < v goto L

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

13

Addresses and Instructions
Example:

Fig: Two ways of assigning labels to three-

address statements

(b) Position numbers

100: t1 = i + 1

101: i = t1
102: t2 = i * 8
103: t3 = a [t2]
104: if t3 < v goto L

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

14

Quadruples
• The description of three-address instructions specifies the

components of each type of instruction, but it does not

specify the representation of these instructions in a data

structure.

• In a compiler, these instructions can be implemented as

objects or as records with fields for the operator and the

operands.

• Three such representations are called

1. Quadruples

2. Triples and

3. Indirect Triples

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

15

Quadruples
• A quadruple (or just “quad”) has four fields, which we call

op, arg1, arg2, and result. The op field contains an internal

code for the operator.

• For instance, the three-address instruction x = y + z is

represented by placing + in op, y in arg1, z in arg2, and x in

result.

The following are some exceptions to this rule:

1. Instructions with unary operators like x = minus y or

x = y do not use arg2. Note that for a copy statement like

x = y, op is =, while for most other operations, the

assignment operator is implied.

2. Operators like param use neither arg2 nor result.

3. Conditional and unconditional jumps put the target label in

result.
Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

16

Quadruples
Example: Three-address code and its quadruple representation

Three-address code for the assignment a = b *- c + b *- c

(a) Three-address code

t1 = minus c or - c

t2 = b * t1

t3 = minus c or - c

t4 = b * t3

t5 = t2 + t4

a = t5

op arg1 arg2 result

0 - c t1

1 * b t1 t2

2 - c t3

3 * b t3 t4

4 + t2 t4 t5

5 = t5 a

(b) Quadruples

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

17

Triples
• A triple has only three fields, which we call op, arg1, and

arg2.

• Note that the result field in Quadruples is used primarily for

temporary names.

• Using triples, we refer to the result of an operation x op y by

its position, rather than by an explicit temporary name.
• Thus, instead of the temporary t1 in Quadruples, a triple

representation would refer to position (0).

• Parenthesized numbers represent pointers into the triple

structure itself.
• Triples are equivalent to signatures in “Algorithm-The

value-number method for constructing the nodes of a DAG”.

Hence, the DAG and triple representations of expressions are

equivalent.

• The equivalence ends with expressions, since syntax-tree variants

and three-address code represent control flow quite differently.
Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

18

Triples
Example:

Syntax tree for the assignment a = b *- c + b *- c

=

a +

c

*

*

b -

Fig: Syntax tree for the assignment a = b *- c + b *- c

c

b -

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

19

Triples
Example: Three-address code and its triple representation for the

assignment a = b *- c + b *- c

(a) Three-address code

t1 = minus c or - c

t2 = b * t1

t3 = minus c or - c

t4 = b * t3

t5 = t2 + t4

a = t5

op arg1 arg2

0 - c

1 * b (0)

2 - c

3 * b (2)

4 + (1) (3)

5 = a (4)

(b) Triples

The copy statement a = t5 is encoded in the triple representation

by placing a in the arg1 field and (4) in the arg2 field.

t1 (0); t2 (1); t3 (2); t4 (3); t5 (4)

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

20

Triples
• A benefit of quadruples over triples can be seen in

an optimizing compiler, where instructions are often

moved around.

• With quadruples, if we move an instruction that

computes a temporary t, then the instructions that use t

require no change.

• With triples, the result of an operation is referred to by

its position, so moving an instruction may require us to

change all references to that result.

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

21

Indirect Triples
• Indirect triples consist of a listing of pointers to

triples, rather than a listing of triples themselves.

• For example, let us use an array instruction to list pointer

to triples in the desired order. Then, the above triples

might be represented as shown below:

op arg1 arg2

0 - c

1 * b (0)

2 - c

3 * b (2)

4 + (1) (3)

5 = a (4)

Fig. Indirect Triples representation of three-address code

instruction

30 (0)

31 (1)

32 (2)

33 (3)

34 (4)

35 (5)

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

22

Indirect Triples
• With indirect triples, an optimizing compiler can

move an instruction by reordering the instruction list,

without affecting the triples themselves.

• When implemented in Java, an array of instruction

objects is analogous to an indirect triple

representation, since Java treats the array elements as

references to objects.

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

23

Practice Problems
EX-1. Translate the arithmetic expression a + -(b + c) into:

a) A syntax tree

b) Quadruples

c) Triples

d) Indirect triples

EX-2. Translate the following assignment statements into:

a) A syntax tree b) Quadruples c) Triples d) Indirect triples

i. a = b[i] + c[j]

ii. a[i] = b*c - b*d

iii. x = f(y+1) + 2

iv. x = *p + &y

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

24

Summary

Three-Address Code

• Addresses and Instructions

• Quadruples

• Triples

Reading: Aho2, Section 6.2.1 to 6.2.4

Next Lecture: Type Checker

Prof R. Madana Mohana | Semantic Analysis, Intermediate Code Generator & Symbol Table | Lecture-6

