
Dr. R. Madana Mohana
Professor, Artificial Intelligence & Data Science | I/c-Head, Artificial Intelligence & Machine Learning

 CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY
Hyderabad - 500 075, Telangana, INDIA

www.cbit.ac.in

Unit - II
CONTEXT FREE GRAMMARS AND PARSING

• Introduction
• Context-Free Grammars - Derivation, Parse trees, Ambiguity
• Types of Parsers
• LL(K) grammars and LL(1) parsing
• Bottom-up Parsing - handle pruning
• LR Grammar Parsing
• LALR parsing
• Parsing ambiguous grammars
• Error Recovery in Parsing
• YACC programming specification

1

THEORY OF COMPUTATION AND COMPILERS

2

Unit-II: Syntax Analysis (or) Parser
Using Ambiguous Grammars

Outline:

• Precedence and Associativity to Resolve Conflicts

• The “Dangling-Else” Ambiguity

• Error Recovery in LR parsing

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

3

Using Ambiguous Grammars
• Strictly speaking no LALR parser exists for

ambiguous grammar.

• But, certain types of ambiguous grammars are quite

useful in the specification and implementation of

languages.

• For large constructs like expressions, an

ambiguous grammar provides a shorter, more natural

specification than any equivalent unambiguous

grammar.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

4

Using Ambiguous Grammars

• Even, for if-else construct, an ambiguous

grammar provides more natural specification than

its unambiguous grammar.

• Since, we are using ambiguous grammar to

construct LR parsers, conflicts occur in the action

part since there will be multiple entries in the parse

table.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

5

Using Ambiguous Grammars

The conflicts can be avoided as shown below:

• Using precedence and associativity to

resolve the conflicts (In case of an expression)

• Avoiding dangling-else ambiguity

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

6

Precedence and Associativity to Resolve Conflicts

Example:

Obtain the LR parsing table for the following

ambiguous grammar:

E’ → E$ where $ indicates end of the input

1.E → E + E

2.E → E * E

3.E → (E)

4.E → id
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

7

Precedence and Associativity to Resolve Conflicts

Example: Solution

The LR(0) items for the above augmented

grammar can be computed as in SLR and are shown

below:
I0:

E’ → .E

E → .E + E

E → .E * E

E → .(E)

E → .id
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

8

Precedence and Associativity to Resolve Conflicts

Example: Solution

I1: GOTO (I0, E)

E’ → E.

E → E. + E

E → E. * E

I2: GOTO (I0, ()

E → (.E)

E → .E + E

E → .E * E

E → .(E)

E → .id

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

9

Precedence and Associativity to Resolve Conflicts

Example: Solution

I3: GOTO (I0, id)

E → id.

I4: GOTO (I1, +)

E → E +.E

E → .E + E

E → .E * E

E → .(E)

E → .id

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

10

Precedence and Associativity to Resolve Conflicts

Example: Solution

I5: GOTO (I1, *)

E → E *. E

E → .E + E

E → .E * E

E → .(E)

E → .id

I6: GOTO (I2, E)

E → (E.)

E → E. + E

E → E. * E

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

11

Precedence and Associativity to Resolve Conflicts

Example: Solution

GOTO (I2, () = I2

E → (.E)

E → .E + E

E → .E * E

E → .(E)

E → .id

GOTO (I2, id) = I3

E → id.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

12

Precedence and Associativity to Resolve Conflicts

Example: Solution

I7: GOTO (I4, E)

E → E + E.

E → E. + E

E → E. * E

GOTO (I4, () = I2

E → (.E)

E → .E + E

E → .E * E

E → .(E)

E → .id

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

13

Precedence and Associativity to Resolve Conflicts

Example: Solution

GOTO (I4, id) = I3

E → id.

I8:GOTO (I5, E)

E → E * E.

E → E. + E

E → E. * E

GOTO (I5, () = I2

GOTO (I5, id) = I3
I9: GOTO (I6,))

E → (E).

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

14

Precedence and Associativity to Resolve Conflicts

Example: Solution

GOTO (I6, +) = I4

GOTO (I6, *) = I5
GOTO (I7, +) = I4

GOTO (I7, *) = I5

GOTO (I8, +) = I4

GOTO (I8, *) = I5

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

15

Precedence and Associativity to Resolve Conflicts

Example: Solution

The FIRST and FOLLOW sets for the given grammar can be

obtained as shown below:

 E

FIRST (, id

FOLLOW +,*,), $

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

16

Precedence and Associativity to Resolve Conflicts

Example: Solution

Construction of SLR Parsing Table:

The parsing action function ACTION and GOTO can be

obtained as shown below:

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

17

Precedence and Associativity to Resolve Conflicts

Example: Solution

The ACTION entries for terminals can be obtained as shown below:

Algorithm Rule 2.a

 Transition

GOTO (Ii, a) = Ij
ACTION [i, a] = shift j

I0, (= I2 [0, (] = s2
I0, id = I3 [0, id] = s3
I1, + = I4 [1, +] = s4
I1, * = I5 [1, *] = s5
I2, (= I2 [2, (] = s2

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

18

Precedence and Associativity to Resolve Conflicts

Example: Solution

Construction of SLR Parsing Table:

Transition

GOTO (Ii, a) = Ij
ACTION [i, a] = shift j

I2, id = I3 [2, id] = s3
I4, (= I2 [4, (] = s2
I4, id = I3 [4, id] = s3
I5, (= I2 [5, (] = s2
I5, id = I3 [5, id] = s3

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

19

Precedence and Associativity to Resolve Conflicts

Example: Solution

Construction of SLR Parsing Table:

Transition

GOTO (Ii, a) = Ij
ACTION [i, a] = shift j

I6, + = I4 [6, +] = s4
I6, * = I5 [6, *] = s5
I6,) = I9 [6,)] = s9
I7, + = I4 [7, +] = s4
I7, * = I5 [7, *] = s5
I8, + = I4 [8, +] = s4
I8, * = I5 [8, *] = s5

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

20

Precedence and Associativity to Resolve Conflicts

Example: Solution

The ACTION entries for the items ending with dot (.) are

shown below: Algorithm Rule 2.b

[A → α.]ϵIi
a = FOLLOW (A) then

ACTION [i, a] = r A → α

[E → id.]ϵI3

[3, {*, +,), $}] = r E → id

(i.e., r4)

FOLLOW (E) = {*, +,), $}

[E → E + E.]ϵI7 [7, {*, +,), $}] = r1

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

21

Precedence and Associativity to Resolve Conflicts

Example: Solution

[A → α.]ϵIi
a = FOLLOW (A) then

ACTION [i, a] = r A → α

[E → E * E.]ϵI8 [8, {*, +,), $}] = r2

[E → (E).]ϵi9 [9, {*, +,), $}] = r3

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

22

Precedence and Associativity to Resolve Conflicts

Example: Solution

[S’ → S.]ϵIi then ACTION [i, $] =

accept: Algorithm Rule 2.c

[S’ → S.]ϵIi ACTION [i, $] = accept

[E’ → E.]ϵI1 [1, $] = accept

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

23

Precedence and Associativity to Resolve Conflicts

Example: Solution

The GOTO states can be computed using rule-3 are

shown below: Algorithm Rule 3

Transition

GOTO (Ii, A) = Ij

Table

GOTO [i, A] = j

I0, E = I1 [0, E] = 1

I2, E = I6 [2, E] = 6

I4, E = I7 [4, E] = 7

I5, E = I8 [5, E] = 8

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

24

Precedence and Associativity to Resolve Conflicts

Example: The final SLR parsing table:

ACTION GOTO

id + * () $ E

0 S3 S2 1
1 S4 S5 acc
2 S3 S2 6
3 r4 r4 r4 r4
4 S3 S2 7
5 S3 S2 8
6 S4 S5 S9
7 S4, r1 S5, r1 r1 r1
8 S4, r2 S5, r2 r2 r2
9 r3 r3 r3 r3
10

11

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

25

Precedence and Associativity to Resolve Conflicts

Example: Solution

Since the grammar is ambiguous, it results in parsing-

action conflicts when we produce the parsing table as

shown above.

The sates corresponding to I7 and I8 generates these

conflicts on input symbols + and *.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

26

Precedence and Associativity to Resolve Conflicts

How to avoid shift-reduce conflicts in

a grammar that has arithmetic

operators?

These conflicts can be resolved using precedence and

associativity of operators as shown below:

1. If input operator and prefix on top of the stack to be

reduced have same precedence and if the operator is

left associative, then preference is given for reduction

action.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

27

Precedence and Associativity to Resolve Conflicts

How to avoid shift-reduce conflicts in

a grammar that has arithmetic

operators?

2. If input operator and prefix on top of the stack to be

reduced have same precedence and if the operator is

right associative, then preference is given for shift

action.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

28

Precedence and Associativity to Resolve Conflicts

How to avoid shift-reduce conflicts in

a grammar that has arithmetic

operators?

3. If input operator has less precedence than the

operator present in the prefix that has to be reduced,

then preference is given for reduce action.

4. If input operator has higher precedence than the

operator present in the prefix that has to be reduced,

then preference is given for shift action.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

29

Precedence and Associativity to Resolve Conflicts

In our example

• Consider the entry: action (7, +) = s4 | r1.

The conflict is whether to shift 4 or to reduce using

E → E + E (since r1 stands for reducer 1st

production). When the input symbol is + and stack

contains E + E and since operator + is left-

associative, preference is given for reduction. So,

retain r1 and eliminate s4.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

30

Precedence and Associativity to Resolve Conflicts

In our example

• Consider the entry: action (7, *) = s5 | r1.

The conflict is whether to shift 5 or to reduce using

E → E + E (since r1 stands for reducer 1st

production). When the input symbol is * and stack

contains E + E and since operator * has higher

precedence than +, preference is given for shifting and

not for reduction. So, retain s5 and eliminate r1.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

31

Precedence and Associativity to Resolve Conflicts

In our example

• Consider the entry: action (8, +) = s4 | r2.

The conflict is whether to shift 4 or to reduce using

E → E * E (since r2 stands for reducer 2nd

production). When the input symbol is + and stack

contains E * E and since operator * higher

precedence than +, preference is given for reduction

and not for shifting. So, retain r2 and eliminate s4.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

32

Precedence and Associativity to Resolve Conflicts

In our example

• Consider the entry: action (8, *) = s5 | r2.

The conflict is whether to shift 5 or to reduce using

E → E * E (since r2 stands for reducer 2nd

production). When the input symbol is * and stack

contains E * E and since operator * and stack

contains E * E and since operator * is left-

associative, preference is given for reduction.

So, retain r2 and eliminate s5.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

33

Precedence and Associativity to Resolve Conflicts

So, the final parsing table can be shown below:

ACTION GOTO

id + * () $ E

0 S3 S2 1
1 S4 S5 acc
2 S3 S2 6
3 r4 r4 r4 r4
4 S3 S2 7
5 S3 S2 8
6 S4 S5 S9
7 r1 S5 r1 r1
8 r2 r2 r2 r2
9 r3 r3 r3 r3
10

11

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

34

Avoiding dangling-else ambiguity
Example:

Obtain the LR parsing table for the following

ambiguous grammar:

 S’ → S$ where $ indicates end of the input

1.S → iSeS

2.S → iS

3.S → a

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

35

Avoiding dangling-else ambiguity
Example: Solution

The LR(0) items for the above augmented

grammar can be computed as in SLR and are shown

below:

I0:

S’ → .S

S → .iSeS

S → .iS

S → .a
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

36

Avoiding dangling-else ambiguity
Example: Solution LR(0) items

I1: GOTO (I0, S)

S’ → S.

I2: GOTO (I0, i)

S → i.SeS

S → i.S

S → .iSeS

S → .iS

S → .a

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

37

Avoiding dangling-else ambiguity
Example: Solution LR(0) items

I3: GOTO (I0, a)

S → a.

I4: GOTO (I2, S)

S → iS.eS

S → iS.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

38

Avoiding dangling-else ambiguity
Example: Solution LR(0) items

GOTO (I2, i)= I2

S → i.SeS

S → i.S

S → .iSeS

S → .iS

S → .a

GOTO (I2, a)= I3

S → a.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

39

Avoiding dangling-else ambiguity
Example: Solution LR(0) items

GOTO (I2, a)= I3

S → a.

I5:GOTO (I4, e)

S → iSe.S

S → .iSeS

S → .iS

S → .a

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

40

Avoiding dangling-else ambiguity
Example: Solution LR(0) items

I6:GOTO (I5, S)

S → iSeS.

GOTO (I5, i) = I2

GOTO (I5, a) = I3

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

41

Avoiding dangling-else ambiguity

Example: Solution FIRST and FOLLOW

The FIRST and FOLLOW sets for the given grammar can be

obtained as shown below:

 S

FIRST i, a

FOLLOW e, $

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

42

Avoiding dangling-else ambiguity

Example: Solution SLR Parsing table

construction

ACTION GOTO

i e a $ S

0 s2 s3 1
1 acc
2 s2 s3 4
3 r3 r3
4 s5, r2 r2
5 s2 s3 6
6 r1 r1

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

43

Avoiding dangling-else ambiguity
Example: Solution

Observe that there are multiple entries in the above LR

parsing table, since the given grammar is ambiguous.

In the entry at action (4, e) = s5 | r2 i.e., there is a

conflict whether to shift 5 on to the stack or reduce using 2nd

production i.e., S → iS. If S is present on top of the stack

instead of reducing, it is better to shift 5 which corresponds to

else. This is because, the else is always associated with

closest if and so instead of reducing, give preference for

shifting. So, retain s5 and eliminate r2.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

44

Avoiding dangling-else ambiguity

Example: Solution Final SLR Parsing

table is shown below:

 ACTION GOTO

i e a $ S

0 s2 s3 1
1 acc
2 s2 s3 4
3 r3 r3
4 s5 r2
5 s2 s3 6
6 r1 r1

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

45

Error Recovery in LR parsing

• An LR parser will detect an error when it consults

the parsing action table and finds an error entry.

• Errors are never detected by consulting the goto table.

• An LR parser will announce an error as soon as

there is no valid continuation for the portion of the

input thus far scanned.

• A canonical LR parser will not make even a

single reduction before announcing an error.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

46

Error Recovery in LR parsing

• SLR and LALR parsers may make several

reductions before announcing an error, but they will

never shift an erroneous input symbol onto the stack.

In LR parsing, we can implement panic-mode

error recovery as follows.

1. We scan down the stack until a state s with a goto on

a particular nonterminal A is found. Zero or more

input symbols are then discarded until a symbol a is

found that can follow A.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

47

Error Recovery in LR parsing

Panic-mode error recovery:

2. The parser then stacks the state GOTO(s, A) and

resumes normal parsing. There might be more than

one choice for the nonterminal A. Normally these

would be nonterminals representing major program

pieces, such as an expression, statement, or block.

For example, if A is the nonterminal stmt, a might be

semicolon or }, which marks the end of a

statement sequence.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

48

Error Recovery in LR parsing

Panic-mode error recovery:

3. This method of recovery attempts to eliminate the phrase

containing the syntactic error. The parser determines that

a string derivable from A contains an error. Part of that

string has already been processed, and the result of this

processing is a sequence of states on top of the stack.

4. The remainder of the string is still in the input, and the

parser attempts to skip over the remainder of this string

by looking for a symbol on the input that can follow A.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

49

Error Recovery in LR parsing

Panic-mode error recovery:

5. By removing states from the stack, skipping over the

input, and pushing GOTO(s, A) on the stack, the

parser pretends that it has found an instance of A and

resumes normal parsing.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

50

Error Recovery in LR parsing

Phrase-level recovery:

1. Phrase-level recovery is implemented by examining
each error entry in the LR parsing table and

deciding on the basis of language usage the most likely

programmer error that would give rise to that error.

2. An appropriate recovery procedure can then be

constructed; evidently the top of the stack and/or

first input symbols would be modified in a way deemed

appropriate for each error entry.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

51

Error Recovery in LR parsing

• In designing specific error-handling routines for an

LR parser, we can fill in each blank entry in the

action field with a pointer to an error routine that will

take the appropriate action selected by the compiler

designer.

• The actions may include insertion or deletion of

symbols from the stack or the input or both, or

alteration and transposition of input symbols.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

52

Error Recovery in LR parsing
• We must make our choices so that the LR parser

will not get into an infinite loop.

• A safe strategy will assure that at least one input symbol

will be removed or shifted eventually, or that the stack

will eventually shrink if the end of the input has been

reached.

• Popping a stack state that covers a nonterminal should be

avoided, because this modification eliminates from the

stack a construct that has already been successfully

parsed.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

53

Error Recovery in LR parsing
Example:

Consider again the expression grammar:

1. E → E + E

2. E → E * E

3. E → (E) | id

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

54

Error Recovery in LR parsing
Example:

LR Parsing table for grammar is shown below:

ACTION GOTO

id + * () $ E

0 S3 S2 1
1 S4 S5 acc
2 S3 S2 6
3 r4 r4 r4 r4
4 S3 S2 7
5 S3 S2 8
6 S4 S5 S9
7 r1 S5 r1 r1
8 r2 r2 r2 r2
9 r3 r3 r3 r3

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

55

Error Recovery in LR parsing
Example:

The LR parsing table modified for error detection and recovery.

 ACTION GOTO

id + * () $ E

0 S3 e1 e1 S2 e2 e1 1
1 e3 S4 S5 e3 e2 acc
2 S3 e1 e1 S2 e2 e1 6
3 r4 r4 r4 r4 r4 r4
4 S3 e1 e1 S2 e2 e1 7
5 S3 e1 e1 S2 e2 e1 8
6 e3 S4 S5 e3 S9 e4
7 r1 r1 S5 r1 r1 r1
8 r2 r2 r2 r2 r2 r2
9 r3 r3 r3 r3 r3 r3

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

56

Error Recovery in LR parsing
Example: Error descriptions

e1: This routine is called from states 0, 2, 4 and 5, all of

which expect the beginning of an operand, either an id or a

left parenthesis. Instead, +, *, or the end of the input was

found.

push state 3 (the goto of states 0, 2, 4 and 5 on id);

issue diagnostic “missing operand.”

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

57

Error Recovery in LR parsing
Example: Error descriptions

e2: Called from states 0, 1, 2, 4 and 5 on finding a right

parenthesis.

remove the right parenthesis from the input;

issue diagnostic “unbalanced right parenthesis.”

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

58

Error Recovery in LR parsing
Example: Error descriptions

e3: Called from states 1 or 6 when expecting an operator,

and an id or right parenthesis is found.

push state 4 (corresponding to symbol +) onto the stack;

issue diagnostic “missing operator.”

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

59

Error Recovery in LR parsing
Example: Error descriptions

e4: Called from state 6 when the end of the input is found.

push state 9 (for a right parenthesis) onto the stack;

issue diagnostic “missing right parenthesis."

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

60

Summary...
Bottom-Up Parsing: Using Ambiguous Grammars

• Precedence and Associativity to Resolve Conflicts

• The “Dangling-Else” Ambiguity

• Error Recovery in LR parsing

Reading: Aho2, Section 4.8 (4.8.1, 4.8.2 & 4.8.3) & 4.6.5

Next Lecture: Parser Generators

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-15

