
Dr. R. Madana Mohana
Professor, Artificial Intelligence & Data Science | I/c-Head, Artificial Intelligence & Machine Learning

 CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY
Hyderabad - 500 075, Telangana, INDIA

www.cbit.ac.in

Unit - II
CONTEXT FREE GRAMMARS AND PARSING

• Introduction
• Context-Free Grammars - Derivation, Parse trees, Ambiguity
• Types of Parsers
• LL(K) grammars and LL(1) parsing
• Bottom-up Parsing - handle pruning
• LR Grammar Parsing
• LALR parsing
• Parsing ambiguous grammars
• Error Recovery in Parsing
• YACC programming specification

1

THEORY OF COMPUTATION AND COMPILERS

2

Unit-II: Syntax Analysis (or) Parser

The LR-Parsing Algorithm

Outline:

• Model of an LR parser

• LR-parsing algorithm

• Moves of an LR parser

• Example problem
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

3

Model of an LR Parser
A schematic of an LR parser is shown in Fig:

LR Parsing Program

a1 a2 .. an $

Input or Input Buffer

Figure: Model of an LR Parser

Where $ is end marker

Parsing Table (SLR/CLR/LALR) with ACTION and GOTO

Output sm

sm-1

..

$

Stack

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

4

Model of an LR Parser

• LR parsers consists of an input, an output, a stack, a driver

program, and a parsing table that has two parts (ACTION and

GOTO).

• The driver program is the same for all LR parsers; only the

parsing table changes from one parser to another.

• The parsing program reads characters from an input buffer

one at a time.

• Where a shift-reduce parser would shift a symbol, an

LR parser shifts a state.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

5

Model of an LR Parser

• Each state summarizes the information contained in the stack

below it.

• The stack holds a sequence of states, s0s1….sm, where sm is

on top of the stack.

• In the SLR method, the stack holds states from the LR(0)

automaton; the Canonical LR (CLR) and LALR

methods are similar.

• By construction, each state has a corresponding grammar

symbol.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

6

Model of an LR Parser

• Recall that states correspond to sets of items, and that

there is a transition from state i to state j if

GOTO(Ii, X) = Ij.

• All transitions to state j must be for the same grammar

symbol X.

• Thus, each state, except the start state 0, has a unique

grammar symbol associated with it.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

7

Model of an LR Parser

Structure of the LR Parsing Table:

The parsing table consists of two parts: a parsing-action

function ACTION and a goto function GOTO.

1. The ACTION function takes as arguments a state i and a

terminal a (or $, the input endmarker). The value of

ACTION[i, a] can have one of four forms:

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

8

Model of an LR Parser

Structure of the LR Parsing Table:

a) Shift j, where j is a state. The action taken by the parser

effectively shifts input a to the stack, but uses state j to

represent a.

b) Reduce A → β. The action of the parser effectively

reduces β on the top of the stack to head A.

c) Accept. The parser accepts the input and finishes parsing.

d) Error. The parser discovers an error in its input and takes

some corrective action.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

9

Model of an LR Parser

Structure of the LR Parsing Table:

2. We extend the GOTO function, defined on sets of

items, to states: if GOTO[Ii, A] = Ij , then

GOTO also maps a state i and a nonterminal A to

state j.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

10

LR-Parser Configurations
To describe the behavior of an LR parser, it helps to

have a notation representing the complete state of the

parser: its stack and the remaining input.

A configuration of an LR parser is a pair:

(s0s1…sm, aiai+1…an$)

where the first component is the stack contents (top on

the right), and the second component is the remaining

input.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

11

LR-Parser Configurations
This configuration represents the right-sentential form

X1X2…Xm, aiai+1…an

in essentially the same way as a shift-reduce parser would; the

only difference is that instead of grammar symbols, the stack

holds states from which grammar symbols can be recovered.

That is, Xi is the grammar symbol represented by state si.

Note that s0, the start state of the parser, does not represent a

grammar symbol, and serves as a bottom-of-stack marker, as

well as playing an important role in the parser.
Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

12

Behavior of the LR Parser

The next move of the parser from the configuration

(s0s1…sm, aiai+1…an$) is determined by reading ai,

the current input symbol, and sm, the state on top of the

stack, and then consulting the entry ACTION[sm, ai]

in the parsing action table.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

13

Behavior of the LR Parser

The configurations resulting after each of the four types

of move are as follows:

1. If ACTION[sm, ai]= shift s, then state s will

be pushed on to the stack corresponding to the input
symbol ai , and the following configuration is

obtained.

(s0s1…sms, ai+1…an$)

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

14

Behavior of the LR Parser

2. If ACTION[sm, ai]= reduce A → β, and if r

is the length of β, remove r states from the stack

and push s onto the stack where

s = GOTO[sm-r, A]and the following configuration

is obtained

(s0s1…sm-rs, aiai+1…an$)

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

15

Behavior of the LR Parser

3. If ACTION[sm, ai]= accept, it indicates that

parsing is successful.

4. If ACTION[sm, ai]= blank, then it is an error.

The parser calls an error recovery routine.

Note: The initial configuration of the LR parser

where 0 is the initial state and w is the input

string.

Stack Input

0 w$

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

16

Behavior of the LR Parser

All LR parsers behave in this fashion; the only

difference between one LR parser and another is

the information in the ACTION and GOTO fields of

the parsing table.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

17

LR-parsing algorithm

Algorithm: LR-parsing algorithm

INPUT: An input string w and an LR-parsing

table with functions ACTION and GOTO for a

grammar G.

OUTPUT: If w is in L(G), the reduction steps of a

bottom-up parser for w ; otherwise, an error

indication.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

18

LR-parsing algorithm

METHOD: Initially, the parser has s0 on its stack,

where s0 is the initial state, and w$ in the input buffer.

The parser then executes the program shown below:

let a be the first symbol of w$;

while(1) {/* repeat forever */

 let s be the state on top of the stack;

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

19

LR-parsing algorithm

METHOD:

if (ACTION[s, a] = shift t) {

 push t onto the stack;

 let a be the next input symbol;

} else if (ACTION[s, a] = reduce A → β){

 pop |β|symbols off the stack;

 let state t now be on top of the stack;

 push GOTO[t, A] onto the stack;

 output the production A → β; }

20

LR-parsing algorithm

METHOD:

else if (ACTION[s, a] = accept)

break; /* parsing is done */

else call error-recovery routine;

}

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

21

Moves of an LR parser

Example:

Show the sequence of moves made by the LR parser for the

string id + id * id using the given grammar and the LR

parsing table:

1. E → E + T

2. E → T

3. T → T * F

4. T → F

5. F → (E)| id

6. F → id

22

Moves of an LR parser
Example: The given LR parsing table:

ACTION GOTO

id + * () $ E T F

0 S5 S4 1 2 3
1 S6 acc
2 r2 S7 r2 r2
3 r4 r4 r4 r4
4 S5 S4 8 2 3
5 r6 r6 r6 r6
6 S5 S4 9 3
7 S5 S4 10
8 S6 S11
9 r1 S7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

23

Moves of an LR parser

Example: Solution

The sequence of moves made by the LR parser for the string

id + id * id is shown below:

Stack Input Action

0 id+id*id$ S5 => shift 5 onto the stack.

05 +id*id$
r6 => Reduce using 6th

production F → id

Note: The length of id on RHS of the production F → id is 1. So,

remove one state (i.e., 5) from the stack and state 0 is on top of the stack. Now,

see the GOTO table i.e., GOTO (0, F) = 3 in the table which is 3. Now,

push 3 onto the stack.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

24

Moves of an LR parser

Example: Solution

Stack Input Action

03 +id*id$

r4 => Reduce using 4th

production T → F. Pop |F| = 1

state from stack i.e., 3 and push
GOTO (0, T) = 2 onto the stack.

02 +id*id$

r2 => Reduce using 2nd

production E → T. Pop |T| = 1

state from stack i.e., 2 and push
GOTO (0, E) = 1 onto the stack.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

25

Moves of an LR parser

Example: Solution

Stack Input Action

01 +id*id$ S6 => shift 6 onto the stack.

016 id*id$ S5 => shift 5 onto the stack.

0165 *id$

r6 => Reduce using 6th

production F → id. Pop |id| = 1

state from stack i.e., 5 and push
GOTO (6, F) = 3 onto the stack.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

26

Moves of an LR parser

Example: Solution

Stack Input Action

0163 *id$

r4 => Reduce using 4th

production T → F. Pop |F| = 1

state from stack i.e., 3 and push
GOTO (6, T) = 9 onto the stack.

0169 *id$ s7 => shift 7 onto the stack.

01697 id$ s5 => shift 5 onto the stack.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

27

Moves of an LR parser

Example: Solution

Stack Input Action

016975 $

r6 => Reduce using 6th

production F → id. Pop |id| = 1

state from stack i.e., 5 and push
GOTO (7, F) = 10 onto the stack.

0169710 $

r3 => Reduce using 3rd

production T → T*F. Pop |T*F| =

3 states from stack i.e., 10, 7 & 9

and push GOTO (6, T) = 9 onto the
stack.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

28

Moves of an LR parser

Example: Solution

Stack Input Action

0169710 $

r3 => Reduce using 3rd

production T → T*F. Pop |T*F| =

3 states from stack i.e., 10, 7 & 9

and push GOTO (6, T) = 9 onto the
stack.

0169 $

r1 => Reduce using 1st

production E → E+T. Pop |E+T| =

3 states from stack i.e., 9, 6 & 1

and push GOTO (0, E) = 1 onto the
stack.

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

29

Moves of an LR parser

Example: Solution

Note:If ACTION [sm, ai] = blank, then it is an error and

parsing is not successful.

Stack Input Action

0169 $

r1 => Reduce using 1st

production E → E+T. Pop |E+T| =

3 states from stack i.e., 9, 6 & 1

and push GOTO (0, E) = 1 onto the
stack.

01 $ ACCEPT, Parsing is successful.

30

Summary...
Bottom-Up Parsing: LR-parsing algorithm

• Model of an LR parser

• LR-parsing algorithm

• Moves of an LR parser

• Example problem

Reading: Aho2, Section 4.6.3

Next Lecture: Simple LR parser (SLR parser)

Prof R. Madana Mohana | Context Free Grammars & Parsing | Lecture-10

